Multi-source Domain Adaptation for Visual Sentiment Classification
- URL: http://arxiv.org/abs/2001.03886v1
- Date: Sun, 12 Jan 2020 08:37:42 GMT
- Title: Multi-source Domain Adaptation for Visual Sentiment Classification
- Authors: Chuang Lin, Sicheng Zhao, Lei Meng, Tat-Seng Chua
- Abstract summary: We propose a novel multi-source domain adaptation (MDA) method, termed Multi-source Sentiment Generative Adversarial Network (MSGAN)
To handle data from multiple source domains, MSGAN learns to find a unified sentiment latent space where data from both the source and target domains share a similar distribution.
Extensive experiments conducted on four benchmark datasets demonstrate that MSGAN significantly outperforms the state-of-the-art MDA approaches for visual sentiment classification.
- Score: 92.53780541232773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing domain adaptation methods on visual sentiment classification
typically are investigated under the single-source scenario, where the
knowledge learned from a source domain of sufficient labeled data is
transferred to the target domain of loosely labeled or unlabeled data. However,
in practice, data from a single source domain usually have a limited volume and
can hardly cover the characteristics of the target domain. In this paper, we
propose a novel multi-source domain adaptation (MDA) method, termed
Multi-source Sentiment Generative Adversarial Network (MSGAN), for visual
sentiment classification. To handle data from multiple source domains, it
learns to find a unified sentiment latent space where data from both the source
and target domains share a similar distribution. This is achieved via cycle
consistent adversarial learning in an end-to-end manner. Extensive experiments
conducted on four benchmark datasets demonstrate that MSGAN significantly
outperforms the state-of-the-art MDA approaches for visual sentiment
classification.
Related papers
- More is Better: Deep Domain Adaptation with Multiple Sources [34.26271755493111]
Multi-source domain adaptation (MDA) is a powerful and practical extension in which the labeled data may be collected from multiple sources with different distributions.
In this survey, we first define various MDA strategies. Then we systematically summarize and compare modern MDA methods in the deep learning era from different perspectives.
arXiv Detail & Related papers (2024-05-01T03:37:12Z) - Noisy Universal Domain Adaptation via Divergence Optimization for Visual
Recognition [30.31153237003218]
A novel scenario named Noisy UniDA is proposed to transfer knowledge from a labeled source domain to an unlabeled target domain.
A multi-head convolutional neural network framework is proposed to address all of the challenges faced in the Noisy UniDA at once.
arXiv Detail & Related papers (2023-04-20T14:18:38Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Multi-Source Domain Adaptation with Collaborative Learning for Semantic
Segmentation [32.95273803359897]
Multi-source unsupervised domain adaptation(MSDA) aims at adapting models trained on multiple labeled source domains to an unlabeled target domain.
We propose a novel multi-source domain adaptation framework based on collaborative learning for semantic segmentation.
arXiv Detail & Related papers (2021-03-08T12:51:42Z) - Curriculum CycleGAN for Textual Sentiment Domain Adaptation with
Multiple Sources [68.31273535702256]
We propose a novel instance-level MDA framework, named curriculum cycle-consistent generative adversarial network (C-CycleGAN)
C-CycleGAN consists of three components: (1) pre-trained text encoder which encodes textual input from different domains into a continuous representation space, (2) intermediate domain generator with curriculum instance-level adaptation which bridges the gap across source and target domains, and (3) task classifier trained on the intermediate domain for final sentiment classification.
We conduct extensive experiments on three benchmark datasets and achieve substantial gains over state-of-the-art DA approaches.
arXiv Detail & Related papers (2020-11-17T14:50:55Z) - Mutual Learning Network for Multi-Source Domain Adaptation [73.25974539191553]
We propose a novel multi-source domain adaptation method, Mutual Learning Network for Multiple Source Domain Adaptation (ML-MSDA)
Under the framework of mutual learning, the proposed method pairs the target domain with each single source domain to train a conditional adversarial domain adaptation network as a branch network.
The proposed method outperforms the comparison methods and achieves the state-of-the-art performance.
arXiv Detail & Related papers (2020-03-29T04:31:43Z) - MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
Adaptation [58.38749495295393]
Domain adaptation aims to learn a transferable model to bridge the domain shift between one labeled source domain and another sparsely labeled or unlabeled target domain.
Recent multi-source domain adaptation (MDA) methods do not consider the pixel-level alignment between sources and target.
We propose a novel MDA framework to address these challenges.
arXiv Detail & Related papers (2020-02-19T21:22:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.