Multi-Source Domain Adaptation with Collaborative Learning for Semantic
Segmentation
- URL: http://arxiv.org/abs/2103.04717v1
- Date: Mon, 8 Mar 2021 12:51:42 GMT
- Title: Multi-Source Domain Adaptation with Collaborative Learning for Semantic
Segmentation
- Authors: Jianzhong He, Xu Jia, Shuaijun Chen, Jianzhuang Liu,
- Abstract summary: Multi-source unsupervised domain adaptation(MSDA) aims at adapting models trained on multiple labeled source domains to an unlabeled target domain.
We propose a novel multi-source domain adaptation framework based on collaborative learning for semantic segmentation.
- Score: 32.95273803359897
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-source unsupervised domain adaptation~(MSDA) aims at adapting models
trained on multiple labeled source domains to an unlabeled target domain. In
this paper, we propose a novel multi-source domain adaptation framework based
on collaborative learning for semantic segmentation. Firstly, a simple image
translation method is introduced to align the pixel value distribution to
reduce the gap between source domains and target domain to some extent. Then,
to fully exploit the essential semantic information across source domains, we
propose a collaborative learning method for domain adaptation without seeing
any data from target domain. In addition, similar to the setting of
unsupervised domain adaptation, unlabeled target domain data is leveraged to
further improve the performance of domain adaptation. This is achieved by
additionally constraining the outputs of multiple adaptation models with pseudo
labels online generated by an ensembled model. Extensive experiments and
ablation studies are conducted on the widely-used domain adaptation benchmark
datasets in semantic segmentation. Our proposed method achieves 59.0\% mIoU on
the validation set of Cityscapes by training on the labeled Synscapes and GTA5
datasets and unlabeled training set of Cityscapes. It significantly outperforms
all previous state-of-the-arts single-source and multi-source unsupervised
domain adaptation methods.
Related papers
- Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
We propose a principled meta-learning based approach to OCDA for semantic segmentation.
We cluster target domain into multiple sub-target domains by image styles, extracted in an unsupervised manner.
A meta-learner is thereafter deployed to learn to fuse sub-target domain-specific predictions, conditioned upon the style code.
We learn to online update the model by model-agnostic meta-learning (MAML) algorithm, thus to further improve generalization.
arXiv Detail & Related papers (2020-12-15T13:21:54Z) - Curriculum CycleGAN for Textual Sentiment Domain Adaptation with
Multiple Sources [68.31273535702256]
We propose a novel instance-level MDA framework, named curriculum cycle-consistent generative adversarial network (C-CycleGAN)
C-CycleGAN consists of three components: (1) pre-trained text encoder which encodes textual input from different domains into a continuous representation space, (2) intermediate domain generator with curriculum instance-level adaptation which bridges the gap across source and target domains, and (3) task classifier trained on the intermediate domain for final sentiment classification.
We conduct extensive experiments on three benchmark datasets and achieve substantial gains over state-of-the-art DA approaches.
arXiv Detail & Related papers (2020-11-17T14:50:55Z) - Unsupervised BatchNorm Adaptation (UBNA): A Domain Adaptation Method for
Semantic Segmentation Without Using Source Domain Representations [35.586031601299034]
Unsupervised BatchNorm Adaptation (UBNA) adapts a given pre-trained model to an unseen target domain.
We partially adapt the normalization layer statistics to the target domain using an exponentially decaying momentum factor.
Compared to standard UDA approaches we report a trade-off between performance and usage of source domain representations.
arXiv Detail & Related papers (2020-11-17T08:37:40Z) - Unsupervised Model Adaptation for Continual Semantic Segmentation [15.820660013260584]
We develop an algorithm for adapting a semantic segmentation model that is trained using a labeled source domain to generalize well in an unlabeled target domain.
We provide theoretical analysis and explain conditions under which our algorithm is effective.
Experiments on benchmark adaptation task demonstrate our method achieves competitive performance even compared with joint UDA approaches.
arXiv Detail & Related papers (2020-09-26T04:55:50Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
Partial domain adaptation aims to adapt knowledge from a larger and more diverse source domain to a smaller target domain with less number of classes.
Recent practice on domain adaptation manages to extract effective features by incorporating the pseudo labels for the target domain.
It is essential to align target data with only a small set of source data.
arXiv Detail & Related papers (2020-08-26T03:18:53Z) - Mutual Learning Network for Multi-Source Domain Adaptation [73.25974539191553]
We propose a novel multi-source domain adaptation method, Mutual Learning Network for Multiple Source Domain Adaptation (ML-MSDA)
Under the framework of mutual learning, the proposed method pairs the target domain with each single source domain to train a conditional adversarial domain adaptation network as a branch network.
The proposed method outperforms the comparison methods and achieves the state-of-the-art performance.
arXiv Detail & Related papers (2020-03-29T04:31:43Z) - MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
Adaptation [58.38749495295393]
Domain adaptation aims to learn a transferable model to bridge the domain shift between one labeled source domain and another sparsely labeled or unlabeled target domain.
Recent multi-source domain adaptation (MDA) methods do not consider the pixel-level alignment between sources and target.
We propose a novel MDA framework to address these challenges.
arXiv Detail & Related papers (2020-02-19T21:22:00Z) - Multi-source Domain Adaptation for Visual Sentiment Classification [92.53780541232773]
We propose a novel multi-source domain adaptation (MDA) method, termed Multi-source Sentiment Generative Adversarial Network (MSGAN)
To handle data from multiple source domains, MSGAN learns to find a unified sentiment latent space where data from both the source and target domains share a similar distribution.
Extensive experiments conducted on four benchmark datasets demonstrate that MSGAN significantly outperforms the state-of-the-art MDA approaches for visual sentiment classification.
arXiv Detail & Related papers (2020-01-12T08:37:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.