AttentionAnatomy: A unified framework for whole-body organs at risk
segmentation using multiple partially annotated datasets
- URL: http://arxiv.org/abs/2001.04446v1
- Date: Mon, 13 Jan 2020 18:31:34 GMT
- Title: AttentionAnatomy: A unified framework for whole-body organs at risk
segmentation using multiple partially annotated datasets
- Authors: Shanlin Sun, Yang Liu, Narisu Bai, Hao Tang, Xuming Chen, Qian Huang,
Yong Liu, Xiaohui Xie
- Abstract summary: Organs-at-risk (OAR) delineation in computed tomography (CT) is an important step in Radiation Therapy (RT) planning.
Our proposed end-to-end convolutional neural network model, called textbfAttentionAnatomy, can be jointly trained with three partially annotated datasets.
Experimental results of our proposed framework presented significant improvements in both Sorensen-Dice coefficient (DSC) and 95% Hausdorff distance.
- Score: 30.23917416966188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Organs-at-risk (OAR) delineation in computed tomography (CT) is an important
step in Radiation Therapy (RT) planning. Recently, deep learning based methods
for OAR delineation have been proposed and applied in clinical practice for
separate regions of the human body (head and neck, thorax, and abdomen).
However, there are few researches regarding the end-to-end whole-body OARs
delineation because the existing datasets are mostly partially or incompletely
annotated for such task. In this paper, our proposed end-to-end convolutional
neural network model, called \textbf{AttentionAnatomy}, can be jointly trained
with three partially annotated datasets, segmenting OARs from whole body. Our
main contributions are: 1) an attention module implicitly guided by body region
label to modulate the segmentation branch output; 2) a prediction
re-calibration operation, exploiting prior information of the input images, to
handle partial-annotation(HPA) problem; 3) a new hybrid loss function combining
batch Dice loss and spatially balanced focal loss to alleviate the organ size
imbalance problem. Experimental results of our proposed framework presented
significant improvements in both S{\o}rensen-Dice coefficient (DSC) and 95\%
Hausdorff distance compared to the baseline model.
Related papers
- Preserving Cardiac Integrity: A Topology-Infused Approach to Whole Heart Segmentation [6.495726693226574]
Whole heart segmentation (WHS) supports cardiovascular disease diagnosis, disease monitoring, treatment planning, and prognosis.
This paper introduces a new topology-preserving module that is integrated into deep neural networks.
The implementation achieves anatomically plausible segmentation by using learned topology-preserving fields, which are based entirely on 3D convolution and are therefore very effective for 3D voxel data.
arXiv Detail & Related papers (2024-10-14T14:32:05Z) - Anatomy-guided domain adaptation for 3D in-bed human pose estimation [62.3463429269385]
3D human pose estimation is a key component of clinical monitoring systems.
We present a novel domain adaptation method, adapting a model from a labeled source to a shifted unlabeled target domain.
Our method consistently outperforms various state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2022-11-22T11:34:51Z) - Multi-organ Segmentation Network with Adversarial Performance Validator [10.775440368500416]
This paper introduces an adversarial performance validation network into a 2D-to-3D segmentation framework.
The proposed network converts the 2D-coarse result to 3D high-quality segmentation masks in a coarse-to-fine manner, allowing joint optimization to improve segmentation accuracy.
Experiments on the NIH pancreas segmentation dataset demonstrate the proposed network achieves state-of-the-art accuracy on small organ segmentation and outperforms the previous best.
arXiv Detail & Related papers (2022-04-16T18:00:29Z) - Semi-Supervised Hybrid Spine Network for Segmentation of Spine MR Images [14.190504802866288]
We propose a two-stage algorithm, named semi-supervised hybrid spine network (SSHSNet) to achieve simultaneous vertebral bodies (VBs) and intervertebral discs (IVDs) segmentation.
In the first stage, we constructed a 2D semi-supervised DeepLabv3+ by using cross pseudo supervision to obtain intra-slice features and coarse segmentation.
In the second stage, a 3D full-resolution patch-based DeepLabv3+ was built to extract inter-slice information.
Results show that the proposed method has great potential in dealing with the data imbalance problem
arXiv Detail & Related papers (2022-03-23T02:57:14Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - External Attention Assisted Multi-Phase Splenic Vascular Injury
Segmentation with Limited Data [72.99534552950138]
The spleen is one of the most commonly injured solid organs in blunt abdominal trauma.
accurate segmentation of splenic vascular injury is challenging for the following reasons.
arXiv Detail & Related papers (2022-01-04T02:35:56Z) - FocusNetv2: Imbalanced Large and Small Organ Segmentation with
Adversarial Shape Constraint for Head and Neck CT Images [82.48587399026319]
delineation of organs-at-risk (OARs) is a vital step in radiotherapy treatment planning to avoid damage to healthy organs.
We propose a novel two-stage deep neural network, FocusNetv2, to solve this challenging problem by automatically locating, ROI-pooling, and segmenting small organs.
In addition to our original FocusNet, we employ a novel adversarial shape constraint on small organs to ensure the consistency between estimated small-organ shapes and organ shape prior knowledge.
arXiv Detail & Related papers (2021-04-05T04:45:31Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Weak Supervision in Convolutional Neural Network for Semantic
Segmentation of Diffuse Lung Diseases Using Partially Annotated Dataset [2.239917051803692]
We develop semantic segmentation model for 5 kinds of lung diseases.
DLDs considered in this work are consolidation, ground glass opacity, honeycombing, emphysema, and normal.
We propose a new weak supervision technique that effectively utilizes partially annotated dataset.
arXiv Detail & Related papers (2020-02-27T06:17:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.