Quantum thermodynamics of two bosonic systems
- URL: http://arxiv.org/abs/2001.04677v2
- Date: Fri, 29 May 2020 14:22:28 GMT
- Title: Quantum thermodynamics of two bosonic systems
- Authors: Chiara Macchiavello, Alberto Riccardi, and Massimiliano F. Sacchi
- Abstract summary: We study the energy exchange between two bosonic systems that interact via bilinear transformations in the mode operators.
This work finds its roots in a very recent formulation of quantum thermodynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the energy exchange between two bosonic systems that interact via
bilinear transformations in the mode operators. The first mode is considered as
the thermodynamic system, while the second is regarded as the bath. This work
finds its roots in a very recent formulation of quantum thermodynamics [1]
which allows to consider baths that are not described by the usual
Boltzmann-Gibbs canonical form. Baths can possess quantum properties, such as
squeezing or coherence, and can be initially correlated with the system, even
through entanglement. We focus mainly on the case of Gaussian states, by
quantifying the relation between their defining parameters, namely the mean
values of the quadratures and the covariance matrix, and relevant
thermodynamical quantities such as the heat exchanged and the work performed
during the interaction process. We fully solve the case of initially
uncorrelated Gaussian states and provide the most general form of the first law
of thermodynamics in this case. We also discuss the case of initially
correlated states by considering a number of relevant examples, studying how
correlations can assist some phenomena, e.g. work extraction or anomalous heat
flows. Finally, we present an information-theoretic approach based on the Renyi
entropy of order two for clarifying more generally the role of correlations on
heat exchanges.
Related papers
- Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Heat currents in qubit systems [0.0]
We present explicit expressions for the heat currents in agreement with the second law of thermodynamics.
We also discuss issues regarding the possible presence of coherences in the steady state.
arXiv Detail & Related papers (2023-01-31T10:41:43Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Fluctuation-dissipation relations for thermodynamic distillation
processes [0.10427337206896375]
fluctuation-dissipation theorem is a fundamental result in statistical physics.
We first characterise optimal thermodynamic distillation processes.
We then prove a relation between the amount of free energy dissipated in such processes and the free energy fluctuations of the initial state of the system.
arXiv Detail & Related papers (2021-05-25T08:53:19Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Ergotropy from quantum and classical correlations [0.0]
We show that the ergotropy can be expressed as a function of the quantum mutual information.
We analyze bipartite quantum systems with locally thermal states.
arXiv Detail & Related papers (2021-02-26T17:23:58Z) - Quantum thermodynamically consistent local master equations [0.0]
We show that local master equations are consistent with thermodynamics and its laws without resorting to a microscopic model.
We consider a quantum system in contact with multiple baths and identify the relevant contributions to the total energy, heat currents and entropy production rate.
arXiv Detail & Related papers (2020-08-11T14:53:36Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z) - Thermodynamics of Optical Bloch Equations [0.0]
We study the coherent exchange of energy between a quantum bit (qubit) and a quasi-resonant driving field in the presence of a thermal bath.
We coarse-grain the obtained expressions, using a methodology similar to the derivation of the dynamical master equation.
Our findings can be readily extended to larger open quantum systems.
arXiv Detail & Related papers (2020-01-22T14:37:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.