Heat currents in qubit systems
- URL: http://arxiv.org/abs/2301.13544v5
- Date: Mon, 29 Jul 2024 17:41:51 GMT
- Title: Heat currents in qubit systems
- Authors: Hans C. Fogedby,
- Abstract summary: We present explicit expressions for the heat currents in agreement with the second law of thermodynamics.
We also discuss issues regarding the possible presence of coherences in the steady state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a current interest in quantum thermodynamics in the context of open quantum systems. An important issue is the consistency of quantum thermodynamics, in particular the second law of thermodynamics, i.e., the flow of heat from a hot reservoir to a cold reservoir. Here recent emphasis has been on composite system and in particular the issue regarding the application of local or global master equations. In order to contribute to this discussion we discuss two cases, namely as an example a single qubit and as a simple composite system two coupled qubits driven by two heat reservoirs at different temperatures, respectively. Applying a global Lindblad master equation approach we present explicit expressions for the heat currents in agreement with the second law of thermodynamics. The analysis is carried out in the Born-Markov approximation. We also discuss issues regarding the possible presence of coherences in the steady state.
Related papers
- Correlated quantum machines beyond the standard second law [0.0]
We derive exact generalized laws of quantum thermodynamics for arbitrary, time-periodic, open systems.
Our results provide a unified formalism to determine the efficiency of correlated microscopic thermal devices.
arXiv Detail & Related papers (2024-09-12T10:09:20Z) - Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - All-thermal reversal of heat currents using qutrits [0.0]
We propose the coherent coupling of two qutrits as a simultaneous refrigerator and heat pump of two reservoirs forming a system.
This occurs thanks to the coupling to two other reservoirs which are out of equilibrium but do not inject heat in the system.
arXiv Detail & Related papers (2024-03-17T09:54:06Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Open quantum systems at finite temperature [0.0]
consistent definition of the thermodynamic functions of small open quantum systems in contact with an environment in equilibrium with a heat bath has been the subject of many debates in the quantum community.
This approach overcomes the controversial discussions generated by the coupling between a system and its environment for any type of coupling between the two parts and allows for a consistent description of the thermodynamical properties of the system strongly interacting with the bath.
arXiv Detail & Related papers (2020-10-29T06:53:40Z) - Quantum thermodynamically consistent local master equations [0.0]
We show that local master equations are consistent with thermodynamics and its laws without resorting to a microscopic model.
We consider a quantum system in contact with multiple baths and identify the relevant contributions to the total energy, heat currents and entropy production rate.
arXiv Detail & Related papers (2020-08-11T14:53:36Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z) - Quantum thermodynamics of two bosonic systems [0.0]
We study the energy exchange between two bosonic systems that interact via bilinear transformations in the mode operators.
This work finds its roots in a very recent formulation of quantum thermodynamics.
arXiv Detail & Related papers (2020-01-14T09:19:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.