Deep Image Compression using Decoder Side Information
- URL: http://arxiv.org/abs/2001.04753v2
- Date: Wed, 29 Jul 2020 15:13:40 GMT
- Title: Deep Image Compression using Decoder Side Information
- Authors: Sharon Ayzik and Shai Avidan
- Abstract summary: We present a Deep Image Compression neural network that relies on side information, which is only available to the decoder.
We compare our algorithm to several image compression algorithms and show that adding decoder-only side information does indeed improve results.
- Score: 23.237308265907377
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a Deep Image Compression neural network that relies on side
information, which is only available to the decoder. We base our algorithm on
the assumption that the image available to the encoder and the image available
to the decoder are correlated, and we let the network learn these correlations
in the training phase.
Then, at run time, the encoder side encodes the input image without knowing
anything about the decoder side image and sends it to the decoder. The decoder
then uses the encoded input image and the side information image to reconstruct
the original image.
This problem is known as Distributed Source Coding in Information Theory, and
we discuss several use cases for this technology. We compare our algorithm to
several image compression algorithms and show that adding decoder-only side
information does indeed improve results. Our code is publicly available at
https://github.com/ayziksha/DSIN.
Related papers
- MISC: Ultra-low Bitrate Image Semantic Compression Driven by Large Multimodal Model [78.4051835615796]
This paper proposes a method called Multimodal Image Semantic Compression.
It consists of an LMM encoder for extracting the semantic information of the image, a map encoder to locate the region corresponding to the semantic, an image encoder generates an extremely compressed bitstream, and a decoder reconstructs the image based on the above information.
It can achieve optimal consistency and perception results while saving perceptual 50%, which has strong potential applications in the next generation of storage and communication.
arXiv Detail & Related papers (2024-02-26T17:11:11Z) - Perceptual Image Compression with Cooperative Cross-Modal Side
Information [53.356714177243745]
We propose a novel deep image compression method with text-guided side information to achieve a better rate-perception-distortion tradeoff.
Specifically, we employ the CLIP text encoder and an effective Semantic-Spatial Aware block to fuse the text and image features.
arXiv Detail & Related papers (2023-11-23T08:31:11Z) - Computationally-Efficient Neural Image Compression with Shallow Decoders [43.115831685920114]
This paper takes a step forward towards closing the gap in decoding complexity by using a shallow or even linear decoding transform resembling that of JPEG.
We exploit the often asymmetrical budget between encoding and decoding, by adopting more powerful encoder networks and iterative encoding.
arXiv Detail & Related papers (2023-04-13T03:38:56Z) - Neural Distributed Image Compression with Cross-Attention Feature
Alignment [1.2234742322758418]
We consider a pair of stereo images, which have overlapping fields of view, captured by a synchronized and calibrated pair of cameras.
We assume that one image of the pair is to be compressed and transmitted, while the other image is available only at the decoder.
In the proposed architecture, the encoder maps the input image to a latent space using a DNN, quantizes the latent representation, and compresses it losslessly using entropy coding.
arXiv Detail & Related papers (2022-07-18T10:15:04Z) - COIN++: Data Agnostic Neural Compression [55.27113889737545]
COIN++ is a neural compression framework that seamlessly handles a wide range of data modalities.
We demonstrate the effectiveness of our method by compressing various data modalities.
arXiv Detail & Related papers (2022-01-30T20:12:04Z) - Small Lesion Segmentation in Brain MRIs with Subpixel Embedding [105.1223735549524]
We present a method to segment MRI scans of the human brain into ischemic stroke lesion and normal tissues.
We propose a neural network architecture in the form of a standard encoder-decoder where predictions are guided by a spatial expansion embedding network.
arXiv Detail & Related papers (2021-09-18T00:21:17Z) - EncoderMI: Membership Inference against Pre-trained Encoders in
Contrastive Learning [27.54202989524394]
We proposeMI, the first membership inference method against image encoders pre-trained by contrastive learning.
We evaluateMI on image encoders pre-trained on multiple datasets by ourselves as well as the Contrastive Language-Image Pre-training (CLIP) image encoder, which is pre-trained on 400 million (image, text) pairs collected from the Internet and released by OpenAI.
arXiv Detail & Related papers (2021-08-25T03:00:45Z) - Deep Stereo Image Compression with Decoder Side Information using Wyner
Common Information [1.5293427903448022]
We consider a pair of stereo images, which generally have high correlation with each other due to overlapping fields of view, and assume that one image of the pair is to be compressed and transmitted.
In the proposed architecture, the encoder maps the input image to a latent space, quantizes the latent representation, and compresses it using entropy coding.
The decoder is trained to extract the Wyner's common information between the input image and the correlated image from the latter.
arXiv Detail & Related papers (2021-06-22T12:46:31Z) - Neural Distributed Source Coding [59.630059301226474]
We present a framework for lossy DSC that is agnostic to the correlation structure and can scale to high dimensions.
We evaluate our method on multiple datasets and show that our method can handle complex correlations and state-of-the-art PSNR.
arXiv Detail & Related papers (2021-06-05T04:50:43Z) - How to Exploit the Transferability of Learned Image Compression to
Conventional Codecs [25.622863999901874]
We show how learned image coding can be used as a surrogate to optimize an image for encoding.
Our approach can remodel a conventional image to adjust for the MS-SSIM distortion with over 20% rate improvement without any decoding overhead.
arXiv Detail & Related papers (2020-12-03T12:34:51Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.