Computationally-Efficient Neural Image Compression with Shallow Decoders
- URL: http://arxiv.org/abs/2304.06244v2
- Date: Fri, 10 Nov 2023 17:14:56 GMT
- Title: Computationally-Efficient Neural Image Compression with Shallow Decoders
- Authors: Yibo Yang and Stephan Mandt
- Abstract summary: This paper takes a step forward towards closing the gap in decoding complexity by using a shallow or even linear decoding transform resembling that of JPEG.
We exploit the often asymmetrical budget between encoding and decoding, by adopting more powerful encoder networks and iterative encoding.
- Score: 43.115831685920114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural image compression methods have seen increasingly strong performance in
recent years. However, they suffer orders of magnitude higher computational
complexity compared to traditional codecs, which hinders their real-world
deployment. This paper takes a step forward towards closing this gap in
decoding complexity by using a shallow or even linear decoding transform
resembling that of JPEG. To compensate for the resulting drop in compression
performance, we exploit the often asymmetrical computation budget between
encoding and decoding, by adopting more powerful encoder networks and iterative
encoding. We theoretically formalize the intuition behind, and our experimental
results establish a new frontier in the trade-off between rate-distortion and
decoding complexity for neural image compression. Specifically, we achieve
rate-distortion performance competitive with the established mean-scale
hyperprior architecture of Minnen et al. (2018) at less than 50K decoding
FLOPs/pixel, reducing the baseline's overall decoding complexity by 80%, or
over 90% for the synthesis transform alone. Our code can be found at
https://github.com/mandt-lab/shallow-ntc.
Related papers
- Accelerating Learned Video Compression via Low-Resolution Representation Learning [18.399027308582596]
We introduce an efficiency-optimized framework for learned video compression that focuses on low-resolution representation learning.
Our method achieves performance levels on par with the low-decay P configuration of the H.266 reference software VTM.
arXiv Detail & Related papers (2024-07-23T12:02:57Z) - Low-complexity Deep Video Compression with A Distributed Coding
Architecture [4.5885672744218]
Prevalent predictive coding-based video compression methods rely on a heavy encoder to reduce temporal redundancy.
Traditional distributed coding methods suffer from a substantial performance gap to predictive coding ones.
We propose the first end-to-end distributed deep video compression framework to improve rate-distortion performance.
arXiv Detail & Related papers (2023-03-21T05:34:04Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
We propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression.
We solve the joint lossy and residual compression problem in the approach of VAEs.
In the near-lossless mode, we quantize the original residuals to satisfy a given $ell_infty$ error bound.
arXiv Detail & Related papers (2022-09-11T12:11:56Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - How to Exploit the Transferability of Learned Image Compression to
Conventional Codecs [25.622863999901874]
We show how learned image coding can be used as a surrogate to optimize an image for encoding.
Our approach can remodel a conventional image to adjust for the MS-SSIM distortion with over 20% rate improvement without any decoding overhead.
arXiv Detail & Related papers (2020-12-03T12:34:51Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
We propose a very simple and efficient video compression framework that only focuses on modeling the conditional entropy between frames.
We first show that a simple architecture modeling the entropy between the image latent codes is as competitive as other neural video compression works and video codecs.
We then propose a novel internal learning extension on top of this architecture that brings an additional 10% savings without trading off decoding speed.
arXiv Detail & Related papers (2020-08-20T20:01:59Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
We propose a content adaptive and error propagation aware video compression system.
Our method employs a joint training strategy by considering the compression performance of multiple consecutive frames instead of a single frame.
Instead of using the hand-crafted coding modes in the traditional compression systems, we design an online encoder updating scheme in our system.
arXiv Detail & Related papers (2020-03-25T09:04:24Z) - A Unified End-to-End Framework for Efficient Deep Image Compression [35.156677716140635]
We propose a unified framework called Efficient Deep Image Compression (EDIC) based on three new technologies.
Specifically, we design an auto-encoder style network for learning based image compression.
Our EDIC method can also be readily incorporated with the Deep Video Compression (DVC) framework to further improve the video compression performance.
arXiv Detail & Related papers (2020-02-09T14:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.