論文の概要: Social and Governance Implications of Improved Data Efficiency
- arxiv url: http://arxiv.org/abs/2001.05068v1
- Date: Tue, 14 Jan 2020 22:26:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 13:19:28.680625
- Title: Social and Governance Implications of Improved Data Efficiency
- Title(参考訳): データ効率向上の社会的・ガバナンス的意義
- Authors: Aaron D. Tucker, Markus Anderljung, and Allan Dafoe
- Abstract要約: 本稿では,データ効率の向上による社会的・経済的影響について考察する。
プライバシー、データ市場、堅牢性、誤用に対する影響は複雑である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many researchers work on improving the data efficiency of machine learning.
What would happen if they succeed? This paper explores the social-economic
impact of increased data efficiency. Specifically, we examine the intuition
that data efficiency will erode the barriers to entry protecting incumbent
data-rich AI firms, exposing them to more competition from data-poor firms. We
find that this intuition is only partially correct: data efficiency makes it
easier to create ML applications, but large AI firms may have more to gain from
higher performing AI systems. Further, we find that the effect on privacy, data
markets, robustness, and misuse are complex. For example, while it seems
intuitive that misuse risk would increase along with data efficiency -- as more
actors gain access to any level of capability -- the net effect crucially
depends on how much defensive measures are improved. More investigation into
data efficiency, as well as research into the "AI production function", will be
key to understanding the development of the AI industry and its societal
impacts.
- Abstract(参考訳): 多くの研究者が機械学習のデータ効率の改善に取り組んでいる。
成功すればどうなるのか?
本稿では,データ効率の向上による社会経済的影響について考察する。
具体的には、データ効率が既存のデータ豊富なai企業を保護するための参入障壁を損なうという直観を検証し、データ汚染企業との競争を激化させます。
データ効率は、MLアプリケーションの作成を容易にしますが、大規模なAI企業は、より高いパフォーマンスのAIシステムからより多くのものを得ることができます。
さらに,プライバシやデータ市場,堅牢性,誤用などへの影響は複雑である。
例えば、データ効率とともに誤用リスクが増加し、より多くのアクターが任意のレベルの能力にアクセスできるようになることは直感的に思えるが、ネット効果は、どれだけの防衛措置が改善されるかに大きく依存する。
データ効率のさらなる調査と「AI生産機能」の研究は、AI産業の発展とその社会的影響を理解するための鍵となるだろう。
関連論文リスト
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - Ethical AI in Retail: Consumer Privacy and Fairness [0.0]
小売業における人工知能(AI)の採用は、業界を大きく変革させ、よりパーソナライズされたサービスと効率的な運用を可能にした。
しかし、AI技術の急速な実装は、特に消費者プライバシと公正性に関する倫理的懸念を提起する。
本研究の目的は、小売業におけるAIアプリケーションの倫理的課題を分析し、競争力を維持しながらAI技術を倫理的に実装する方法を探究し、倫理的AIプラクティスに関する推奨を提供することである。
論文 参考訳(メタデータ) (2024-10-20T12:00:14Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
生成AIは、学術分野と産業分野の両方から多くの注目を集めている。
セキュアでプライバシ保護のモバイルクラウドセンシング(SPPMCS)は、データ収集/取得に広く応用されている。
論文 参考訳(メタデータ) (2024-05-17T04:00:58Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
AI技術の信頼性に関する深刻な懸念があった。
機械学習とディープラーニングのアルゴリズムは、開発に使用されるデータに大きく依存する。
本稿では,責任あるルーブリックを用いてデータセットを評価するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-24T14:01:53Z) - The Dimensions of Data Labor: A Road Map for Researchers, Activists, and
Policymakers to Empower Data Producers [14.392208044851976]
データプロデューサは、取得したデータ、使用方法、あるいはそのメリットについてはほとんど言及していません。
このデータにアクセスし、処理する能力を持つ組織、例えばOpenAIやGoogleは、テクノロジーのランドスケープを形成する上で大きな力を持っている。
研究者,政策立案者,活動家がデータ生産者に力を与える機会を概説する。
論文 参考訳(メタデータ) (2023-05-22T17:11:22Z) - Towards Generalizable Data Protection With Transferable Unlearnable
Examples [50.628011208660645]
本稿では、転送不可能な例を生成することによって、新しい一般化可能なデータ保護手法を提案する。
私たちの知る限りでは、これはデータ分散の観点からデータのプライバシを調べる最初のソリューションです。
論文 参考訳(メタデータ) (2023-05-18T04:17:01Z) - Data-Centric Green AI: An Exploratory Empirical Study [6.4265933507484]
データ中心のアプローチがAIエネルギー効率に与える影響について検討する。
以上の結果から,データセットの変更を排他的に行うことで,エネルギー消費を大幅に削減できることが示唆された。
我々の研究成果は、グリーンAIをさらに有効化し民主化するためのデータ中心技術に焦点を当てた研究課題である。
論文 参考訳(メタデータ) (2022-04-06T12:22:43Z) - AI Assurance using Causal Inference: Application to Public Policy [0.0]
ほとんどのAIアプローチは、"ブラックボックス"としてのみ表現することができ、透明性の欠如に悩まされる。
効果的で堅牢なAIシステムを開発するだけでなく、内部プロセスが説明可能で公平であることを確認することも重要です。
論文 参考訳(メタデータ) (2021-12-01T16:03:06Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
オフラインで収集されたデータセット(観測データ)を組み込んで、オンライン環境でのサンプル効率を改善する方法について検討する。
提案手法は,観測データを効率よく組み込んだ,分解された楽観的値反復 (DOVI) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-22T14:49:33Z) - Quantifying the Performance of Federated Transfer Learning [7.1423970352437385]
Federated Transfer Learning(FTL)は、データのプライバシを侵害することなくデータを共有するためのソリューションである。
FTLは、異なるソースからのデータをトレーニングに利用するために転送学習技術を使用する。
本稿は,Google Cloud上の実世界のFTL実装を定量的に測定することで,この問題に対処しようとするものである。
論文 参考訳(メタデータ) (2019-12-30T03:10:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。