Improved Orientation Estimation and Detection with Hybrid Object
Detection Networks for Automotive Radar
- URL: http://arxiv.org/abs/2205.02111v1
- Date: Tue, 3 May 2022 06:29:03 GMT
- Title: Improved Orientation Estimation and Detection with Hybrid Object
Detection Networks for Automotive Radar
- Authors: Michael Ulrich, Sascha Braun, Daniel K\"ohler, Daniel Niederl\"ohner,
Florian Faion, Claudius Gl\"aser and Holger Blume
- Abstract summary: We present novel hybrid architectures that combine grid- and point-based processing to improve radar-based object detection networks.
We show that a point-based model can extract neighborhood features, leveraging the exact relative positions of points, before grid rendering.
This has significant benefits for a following convolutional detection backbone.
- Score: 1.53934570513443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents novel hybrid architectures that combine grid- and
point-based processing to improve the detection performance and orientation
estimation of radar-based object detection networks. Purely grid-based
detection models operate on a bird's-eye-view (BEV) projection of the input
point cloud. These approaches suffer from a loss of detailed information
through the discrete grid resolution. This applies in particular to radar
object detection, where relatively coarse grid resolutions are commonly used to
account for the sparsity of radar point clouds. In contrast, point-based models
are not affected by this problem as they continuously process point clouds.
However, they generally exhibit worse detection performances than grid-based
methods.
We show that a point-based model can extract neighborhood features,
leveraging the exact relative positions of points, before grid rendering. This
has significant benefits for a following convolutional detection backbone. In
experiments on the public nuScenes dataset our hybrid architecture achieves
improvements in terms of detection performance and orientation estimates over
networks from previous literature.
Related papers
- Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Improved Multi-Scale Grid Rendering of Point Clouds for Radar Object
Detection Networks [3.3787383461150045]
The transfer from irregular point cloud data to a dense grid structure is often associated with a loss of information.
We propose a novel architecture, multi-scale KPPillarsBEV, that aims to mitigate the negative effects of grid rendering.
arXiv Detail & Related papers (2023-05-25T08:26:42Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - RadarGNN: Transformation Invariant Graph Neural Network for Radar-based
Perception [0.0]
A novel graph neural network is proposed that does not just use the information of the points themselves but also the relationships between them.
The model is designed to consider both point features and point-pair features, embedded in the edges of the graph.
The RadarGNN model outperforms all previous methods on the RadarScenes dataset.
arXiv Detail & Related papers (2023-04-13T13:57:21Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
We propose the RBGNet framework, a voting-based 3D detector for accurate 3D object detection from point clouds.
We propose a ray-based feature grouping module, which aggregates the point-wise features on object surfaces using a group of determined rays.
Our model achieves state-of-the-art 3D detection performance on ScanNet V2 and SUN RGB-D with remarkable performance gains.
arXiv Detail & Related papers (2022-04-05T14:42:57Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z) - R-AGNO-RPN: A LIDAR-Camera Region Deep Network for Resolution-Agnostic
Detection [3.4761212729163313]
R-AGNO-RPN, a region proposal network built on fusion of 3D point clouds and RGB images is proposed.
Our approach is designed to be also applied on low point cloud resolutions.
arXiv Detail & Related papers (2020-12-10T15:22:58Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
We propose a novel 3D object detection framework with dynamic information modeling.
Coarse predictions are generated in the first stage via a voxel-based region proposal network.
Experiments are conducted on the large-scale nuScenes 3D detection benchmark.
arXiv Detail & Related papers (2020-07-16T18:27:08Z) - Detection Method Based on Automatic Visual Shape Clustering for
Pin-Missing Defect in Transmission Lines [1.602803566465659]
Bolts are the most numerous fasteners in transmission lines and are prone to losing their split pins.
How to realize the automatic pin-missing defect detection for bolts in transmission lines so as to achieve timely and efficient trouble shooting is a difficult problem.
In this paper, an automatic detection model called Automatic Visual Shape Clustering Network (AVSCNet) for pin-missing defect is constructed.
arXiv Detail & Related papers (2020-01-17T10:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.