論文の概要: An Unsupervised Generative Neural Approach for InSAR Phase Filtering and
Coherence Estimation
- arxiv url: http://arxiv.org/abs/2001.09631v3
- Date: Sun, 9 Aug 2020 22:33:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-06 08:00:36.482722
- Title: An Unsupervised Generative Neural Approach for InSAR Phase Filtering and
Coherence Estimation
- Title(参考訳): InSAR位相フィルタリングとコヒーレンス推定のための教師なし生成ニューラルアプローチ
- Authors: Subhayan Mukherjee, Aaron Zimmer, Xinyao Sun, Parwant Ghuman, Irene
Cheng
- Abstract要約: 我々は,共同位相フィルタリングとコヒーレンス推定のためのCNNに基づく生成モデルであるGenInSARを提案する。
GenInSARの衛星とシミュレートされたノイズのあるInSAR画像に関する教師なしの訓練は、全残留量削減において他の関連手法よりも優れている。
Coherence Root-Mean-Squared-Error と Phase Cosine Error はそれぞれ、関連する方法と比較して平均 0.54, 0.07, 0.05 改善されている。
- 参考スコア(独自算出の注目度): 3.8218584696400484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phase filtering and pixel quality (coherence) estimation is critical in
producing Digital Elevation Models (DEMs) from Interferometric Synthetic
Aperture Radar (InSAR) images, as it removes spatial inconsistencies (residues)
and immensely improves the subsequent unwrapping. Large amount of InSAR data
facilitates Wide Area Monitoring (WAM) over geographical regions. Advances in
parallel computing have accelerated Convolutional Neural Networks (CNNs),
giving them advantages over human performance on visual pattern recognition,
which makes CNNs a good choice for WAM. Nevertheless, this research is largely
unexplored. We thus propose "GenInSAR", a CNN-based generative model for joint
phase filtering and coherence estimation, that directly learns the InSAR data
distribution. GenInSAR's unsupervised training on satellite and simulated noisy
InSAR images outperforms other five related methods in total residue reduction
(over 16.5% better on average) with less over-smoothing/artefacts around branch
cuts. GenInSAR's Phase, and Coherence Root-Mean-Squared-Error and Phase Cosine
Error have average improvements of 0.54, 0.07, and 0.05 respectively compared
to the related methods.
- Abstract(参考訳): 位相フィルタリングと画素品質(コヒーレンス)推定は、干渉合成開口レーダ(InSAR)画像からデジタル標高モデル(DEM)を作成する際に重要であり、空間的不整合(残差)を除去し、その後のアンラッピングを大幅に改善する。
大量のInSARデータは、地理的領域にわたる広域モニタリング(WAM)を容易にする。
並列コンピューティングの進歩は、畳み込みニューラルネットワーク(CNN)を加速し、視覚的パターン認識における人間のパフォーマンスよりも有利になった。
しかし、この研究はほとんど未調査である。
そこで我々は,共同位相フィルタリングとコヒーレンス推定のためのCNNに基づく生成モデルであるGenInSARを提案し,InSARのデータ分布を直接学習する。
ゲニンサーの衛星とシミュレートされたノイズのinsar画像に関する教師なしの訓練は、他の5つの関連する方法(平均16.5%以上)を上回っており、分岐カット周辺の過剰なスムーシング/アーティファクトは少ない。
ゲニンサーの位相とコヒーレンス根-平均二乗誤差と位相コサイン誤差はそれぞれ0.54, 0.07, 0.05であった。
関連論文リスト
- DPER: Diffusion Prior Driven Neural Representation for Limited Angle and Sparse View CT Reconstruction [45.00528216648563]
Diffusion Prior Driven Neural Representation (DPER) は、異常に不適切なCT再構成逆問題に対処するために設計された、教師なしのフレームワークである。
DPERは、半二次分割法(HQS)アルゴリズムを採用し、逆問題からデータ忠実度とサブプロブレム前の分布に分解する。
LACTにおけるDPERの性能評価と2つの公開データセットを用いた超SVCT再構成に関する総合的な実験を行った。
論文 参考訳(メタデータ) (2024-04-27T12:55:13Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral
Image Generation with Variance Regularization [72.4394510913927]
ディープラーニング法はスペクトル画像(SI)計算タスクの最先端技術である。
GANは、データ分散から学習およびサンプリングすることで、多様な拡張を可能にする。
この種のデータの高次元性は、GANトレーニングの収束を妨げるため、GANベースのSI生成は困難である。
本稿では, オートエンコーダ訓練における低次元表現分散を制御し, GANで生成されたサンプルの多様性を高めるための統計正則化を提案する。
論文 参考訳(メタデータ) (2023-04-29T00:25:02Z) - Semantic segmentation of surgical hyperspectral images under geometric
domain shifts [69.91792194237212]
本稿では、幾何学的アウト・オブ・ディストリビューション(OOD)データの存在下で、最先端のセマンティックセグメンテーションネットワークを初めて分析する。
有機移植(Organ transplantation)と呼ばれる専用の拡張技術により、一般化可能性にも対処する。
提案手法は,SOA DSCの最大67 % (RGB) と90% (HSI) を改善し,実際のOODテストデータ上での分配内性能と同等の性能を示す。
論文 参考訳(メタデータ) (2023-03-20T09:50:07Z) - SAR-ShipNet: SAR-Ship Detection Neural Network via Bidirectional
Coordinate Attention and Multi-resolution Feature Fusion [7.323279438948967]
本稿では,ニューラルネットワークによる合成開口レーダ(SAR)画像から,事実上有意義な船舶検出問題について検討する。
本稿では,CentralNetに基づく双方向協調注意(BCA)とMRF(Multi- resolution Feature Fusion)を新たに開発したSAR-ShipNet(略してSAR-ShipNet)を提案する。
パブリックなSAR-Shipデータセットの実験結果から,SAR-ShipNetは速度と精度の両面で競争上の優位性を達成していることがわかった。
論文 参考訳(メタデータ) (2022-03-29T12:27:04Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - New SAR target recognition based on YOLO and very deep multi-canonical
correlation analysis [0.1503974529275767]
本稿では,異なるCNN層から有効な特徴を適応的に融合させることにより,SAR画像ターゲット分類のためのロバストな特徴抽出手法を提案する。
MSTARデータセットの実験により,提案手法が最先端手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-10-28T18:10:26Z) - A SAR speckle filter based on Residual Convolutional Neural Networks [68.8204255655161]
本研究では,Convolutional Neural Networks(CNN)に基づく深層学習(DL)アルゴリズムを用いて,Sentinel-1データからスペックルノイズをフィルタリングする新しい手法を提案する。
得られた結果は、技術の現状と比較すると、ピーク信号対雑音比(PSNR)と構造類似度指数(SSIM)の点で明確な改善を示しています。
論文 参考訳(メタデータ) (2021-04-19T14:43:07Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
本稿では,AEP-Net と呼ばれる協調的コンテキスト符号化ネットワークを提案する。
具体的には、画像とマスクのより優れた特徴融合のための協調的な特徴変換分岐と、エラー領域の正確な局所化を提案する。
AEP-Netはエラー予測タスクの平均DSCが0.8358,0.8164であり、ピアソン相関係数が0.9873である。
論文 参考訳(メタデータ) (2020-06-25T12:42:01Z) - CNN-based InSAR Coherence Classification [3.562355298993529]
畳み込みニューラルネットワーク(CNN)を導入し,コヒーレンスに基づく分類を改善し,非一貫性領域における誤分類を低減する。
トレーニングデータの知的前処理により,コヒーレンスに基づく分類の改善と,非コヒーレント領域における誤分類の低減に有効であることを示す。
論文 参考訳(メタデータ) (2020-01-20T03:25:38Z) - CNN-based InSAR Denoising and Coherence Metric [4.051689818086047]
ノイズは衛星で受信されたマイクロ波反射を破損させ、信号のラップされた位相を汚染する。
畳み込みニューラルネットワーク(CNN)を導入し,InSAR画像復調フィルタの学習を行う。
オートエンコーダCNNアーキテクチャのInSAR画像復調フィルタへの応用について述べる。
論文 参考訳(メタデータ) (2020-01-20T03:20:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。