論文の概要: Adaptive Dithering Using Curved Markov-Gaussian Noise in the Quantized
Domain for Mapping SDR to HDR Image
- arxiv url: http://arxiv.org/abs/2001.06983v1
- Date: Mon, 20 Jan 2020 05:30:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-08 05:41:05.129683
- Title: Adaptive Dithering Using Curved Markov-Gaussian Noise in the Quantized
Domain for Mapping SDR to HDR Image
- Title(参考訳): SDRをHDR画像にマッピングする量子領域における曲線マルコフ・ガウス雑音を用いた適応ディザリング
- Authors: Subhayan Mukherjee, Guan-Ming Su, and Irene Cheng
- Abstract要約: 高ダイナミックレンジ(SDR)イメージングは、レギュラーディスプレイだけでなくスマートフォンでも、リアルなコンテンツによって注目を集めている。
本稿では,量子化画像の画素で動作するノイズ生成手法を提案する。
我々は、量子化画素のルマと逆トーンマッピング関数の傾きに基づいて、雑音パターンの大きさと構造を適応的に変化させる。
- 参考スコア(独自算出の注目度): 2.913398015606848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High Dynamic Range (HDR) imaging is gaining increased attention due to its
realistic content, for not only regular displays but also smartphones. Before
sufficient HDR content is distributed, HDR visualization still relies mostly on
converting Standard Dynamic Range (SDR) content. SDR images are often
quantized, or bit depth reduced, before SDR-to-HDR conversion, e.g. for video
transmission. Quantization can easily lead to banding artefacts. In some
computing and/or memory I/O limited environment, the traditional solution using
spatial neighborhood information is not feasible. Our method includes noise
generation (offline) and noise injection (online), and operates on pixels of
the quantized image. We vary the magnitude and structure of the noise pattern
adaptively based on the luma of the quantized pixel and the slope of the
inverse-tone mapping function. Subjective user evaluations confirm the superior
performance of our technique.
- Abstract(参考訳): 高ダイナミックレンジ(HDR)イメージングは、レギュラーディスプレイだけでなくスマートフォンでも、リアルなコンテンツによって注目を集めている。
十分なHDRコンテンツが配布される前は、HDRビジュアライゼーションは主に標準ダイナミックレンジ(SDR)コンテンツへの変換に依存していた。
SDR画像はしばしば、SDR-to-HDR変換(例えばビデオ伝送)の前に量子化される。
量子化は容易にバンド状アーティファクトにつながる。
一部の計算および/またはメモリI/O制限環境では、空間近傍情報を用いた従来のソリューションは実現不可能である。
本手法は,ノイズ発生(オフライン)とノイズ注入(オンライン)を含み,量子化画像の画素で動作する。
量子化画素のlumaと逆トーンマッピング関数の傾きに基づいて,ノイズパターンの大きさと構造を適応的に変化させる。
主観的ユーザ評価は,本手法の優れた性能を確認する。
関連論文リスト
- Semantic Aware Diffusion Inverse Tone Mapping [5.65968650127342]
逆トーンマッピングによる高ダイナミックレンジ(HDR)へのキャプチャー標準ダイナミックレンジ(SDR)画像のアップの試み
本稿では,SDR画像をHDRにマッピングする新たな逆トーンマッピング手法を提案する。
論文 参考訳(メタデータ) (2024-05-24T11:44:22Z) - HDR-GS: Efficient High Dynamic Range Novel View Synthesis at 1000x Speed via Gaussian Splatting [76.5908492298286]
既存のHDR NVS法は主にNeRFに基づいている。
訓練時間は長く、推論速度は遅い。
我々は新しいフレームワークHigh Dynamic Range Gaussian Splatting (-GS)を提案する。
論文 参考訳(メタデータ) (2024-05-24T00:46:58Z) - Adapting Pretrained Networks for Image Quality Assessment on High Dynamic Range Displays [0.0]
従来の画像品質指標(IQMs)は、知覚的に均一なガンマ符号化されたピクセル値のために設計されている。
利用可能なデータセットのほとんどは、標準およびおそらく制御されていない観測条件で収集された標準ダイナミックレンジ(SDR)イメージで構成されている。
一般的なトレーニング済みニューラルネットワークもSDR入力を意図しており、HDRコンテンツへの直接適用を制限している。
本研究では,HDRデータに基づく画像品質評価(IQA)のための深層学習モデル学習のための,より効果的なアプローチについて検討する。
論文 参考訳(メタデータ) (2024-05-01T17:57:12Z) - Generating Content for HDR Deghosting from Frequency View [56.103761824603644]
近年の拡散モデル (DM) はHDRイメージング分野に導入されている。
DMは画像全体を推定するために大きなモデルで広範囲の反復を必要とする。
ゴーストフリーHDRイメージングのための低周波数対応拡散(LF-Diff)モデルを提案する。
論文 参考訳(メタデータ) (2024-04-01T01:32:11Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
高ダイナミックレンジ(LDR)画像は、既存のディープニューラルネットワーク(DNN)技術により、複数の低ダイナミックレンジ(LDR)画像から復元することができる。
DNNは、LDR画像が飽和度と大きな動きを持つ場合、ゴーストアーティファクトを生成する。
拡散モデルの条件としてLDR特徴を利用する画像生成としてHDRデゴースト問題を定式化する。
論文 参考訳(メタデータ) (2023-11-02T01:53:55Z) - SMAE: Few-shot Learning for HDR Deghosting with Saturation-Aware Masked
Autoencoders [97.64072440883392]
そこで本研究では,SSHDRと呼ばれる2段階の訓練を通した短距離HDRイメージングを実現するための,新しい半教師付きアプローチを提案する。
以前の方法とは異なり、コンテンツを直接回復し、ゴーストを同時に除去することは、最適に達成することが難しい。
実験により、SSHDRは異なるデータセットの内外における定量的かつ定性的に最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-04-14T03:42:51Z) - Invertible Tone Mapping with Selectable Styles [19.03179521805971]
本稿では,マルチ露光HDRを真のLDRに変換する可逆トーンマッピング法を提案する。
我々の可逆LDRは、ユーザが選択したトーンマッピングスタイルの外観を模倣することができる。
アップロードされた画像を再エンコードしたり、フォーマット変換したりできる既存のソーシャルネットワークプラットフォーム上で共有することができる。
論文 参考訳(メタデータ) (2021-10-09T07:32:36Z) - Wavelet-Based Network For High Dynamic Range Imaging [64.66969585951207]
光学フローベースやエンド・ツー・エンドのディープラーニングベースのソリューションのような既存の方法は、詳細な復元やゴーストを除去する際にエラーを起こしやすい。
本研究では、周波数領域でHDR融合を行うための新しい周波数誘導型エンド・ツー・エンドディープニューラルネットワーク(FNet)を提案し、ウェーブレット変換(DWT)を用いて入力を異なる周波数帯域に分解する。
低周波信号は特定のゴーストアーティファクトを避けるために使用され、高周波信号は詳細を保存するために使用される。
論文 参考訳(メタデータ) (2021-08-03T12:26:33Z) - HDRUNet: Single Image HDR Reconstruction with Denoising and
Dequantization [39.82945546614887]
本研究では,空間動的エンコーダデコーダネットワークであるHDRUNetを用いて,単一画像HDR再構成のためのエンドツーエンドマッピングを学習する。
本手法は,定量的比較と視覚的品質において最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-05-27T12:12:34Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
マルチ露光LDR画像からHDR画像を合成するための新しいGANモデルHDR-GANを提案する。
本手法は,敵対学習を取り入れることで,欠落したコンテンツのある領域に忠実な情報を生成することができる。
論文 参考訳(メタデータ) (2020-07-03T11:42:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。