論文の概要: Adapting Pretrained Networks for Image Quality Assessment on High Dynamic Range Displays
- arxiv url: http://arxiv.org/abs/2405.00670v1
- Date: Wed, 1 May 2024 17:57:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 14:57:49.246616
- Title: Adapting Pretrained Networks for Image Quality Assessment on High Dynamic Range Displays
- Title(参考訳): 高ダイナミックレンジディスプレイにおける画像品質評価のための事前学習ネットワークの適用
- Authors: Andrei Chubarau, Hyunjin Yoo, Tara Akhavan, James Clark,
- Abstract要約: 従来の画像品質指標(IQMs)は、知覚的に均一なガンマ符号化されたピクセル値のために設計されている。
利用可能なデータセットのほとんどは、標準およびおそらく制御されていない観測条件で収集された標準ダイナミックレンジ(SDR)イメージで構成されている。
一般的なトレーニング済みニューラルネットワークもSDR入力を意図しており、HDRコンテンツへの直接適用を制限している。
本研究では,HDRデータに基づく画像品質評価(IQA)のための深層学習モデル学習のための,より効果的なアプローチについて検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional image quality metrics (IQMs), such as PSNR and SSIM, are designed for perceptually uniform gamma-encoded pixel values and cannot be directly applied to perceptually non-uniform linear high-dynamic-range (HDR) colors. Similarly, most of the available datasets consist of standard-dynamic-range (SDR) images collected in standard and possibly uncontrolled viewing conditions. Popular pre-trained neural networks are likewise intended for SDR inputs, restricting their direct application to HDR content. On the other hand, training HDR models from scratch is challenging due to limited available HDR data. In this work, we explore more effective approaches for training deep learning-based models for image quality assessment (IQA) on HDR data. We leverage networks pre-trained on SDR data (source domain) and re-target these models to HDR (target domain) with additional fine-tuning and domain adaptation. We validate our methods on the available HDR IQA datasets, demonstrating that models trained with our combined recipe outperform previous baselines, converge much quicker, and reliably generalize to HDR inputs.
- Abstract(参考訳): PSNRやSSIMのような従来の画像品質指標(IQM)は、知覚的に均一なガンマ符号化されたピクセル値のために設計されており、知覚的に一様でない線形高ダイナミックレンジ(HDR)色には直接適用できない。
同様に、利用可能なデータセットのほとんどは標準ダイナミックレンジ(SDR)画像からなり、標準条件とおそらく制御不能な観測条件で収集される。
一般的なトレーニング済みニューラルネットワークもSDR入力を意図しており、HDRコンテンツへの直接適用を制限している。
一方、HDRデータが少ないため、スクラッチからHDRモデルをトレーニングすることは困難である。
本研究では,HDRデータに基づく画像品質評価(IQA)のための深層学習モデル学習のための,より効果的なアプローチについて検討する。
我々は、SDRデータ(ソース・ドメイン)で事前訓練されたネットワークを活用し、これらのモデルをHDR(ターゲット・ドメイン)に再ターゲットし、追加の微調整とドメイン適応を行う。
提案手法を利用可能なHDR IQAデータセット上で検証し、組み合わせたレシピで訓練したモデルが以前のベースラインより優れ、より高速に収束し、HDR入力に確実に一般化できることを実証した。
関連論文リスト
- HDR-GS: Efficient High Dynamic Range Novel View Synthesis at 1000x Speed via Gaussian Splatting [76.5908492298286]
既存のHDR NVS法は主にNeRFに基づいている。
訓練時間は長く、推論速度は遅い。
我々は新しいフレームワークHigh Dynamic Range Gaussian Splatting (-GS)を提案する。
論文 参考訳(メタデータ) (2024-05-24T00:46:58Z) - Generating Content for HDR Deghosting from Frequency View [56.103761824603644]
近年の拡散モデル (DM) はHDRイメージング分野に導入されている。
DMは画像全体を推定するために大きなモデルで広範囲の反復を必要とする。
ゴーストフリーHDRイメージングのための低周波数対応拡散(LF-Diff)モデルを提案する。
論文 参考訳(メタデータ) (2024-04-01T01:32:11Z) - HistoHDR-Net: Histogram Equalization for Single LDR to HDR Image
Translation [12.45632443397018]
高ダイナミックレンジ(HDR)イメージングは、現実世界のシーンの高画質と明快さを再現することを目的としている。
この文献は、低ダイナミックレンジ(Low Dynamic Range, LDR)からのHDR画像再構成のための様々なデータ駆動手法を提供している。
これらのアプローチの共通する制限は、再構成されたHDR画像の領域における詳細が欠けていることである。
細部を復元するためのシンプルで効果的な手法Histo-Netを提案する。
論文 参考訳(メタデータ) (2024-02-08T20:14:46Z) - HIDRO-VQA: High Dynamic Range Oracle for Video Quality Assessment [36.1179702443845]
HIDRO-VQAは,ハイダイナミックレンジ(ハイダイナミックレンジ)ビデオの正確な品質評価を提供するために設計された,NRビデオ品質評価モデルである。
この結果から, 自己教師型ニューラルネットワークは, 最先端の性能を達成するために, 自己教師型設定でさらに微調整できることがわかった。
我々のアルゴリズムはFull Reference VQA設定に拡張することができ、また最先端の性能を達成することができる。
論文 参考訳(メタデータ) (2023-11-18T12:33:19Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
高ダイナミックレンジ(LDR)画像は、既存のディープニューラルネットワーク(DNN)技術により、複数の低ダイナミックレンジ(LDR)画像から復元することができる。
DNNは、LDR画像が飽和度と大きな動きを持つ場合、ゴーストアーティファクトを生成する。
拡散モデルの条件としてLDR特徴を利用する画像生成としてHDRデゴースト問題を定式化する。
論文 参考訳(メタデータ) (2023-11-02T01:53:55Z) - Perceptual Assessment and Optimization of HDR Image Rendering [25.72195917050074]
高ダイナミックレンジレンダリングは、自然界の広い輝度範囲を忠実に再現する能力を持つ。
既存の画質モデルは、主に低ダイナミックレンジ(LDR)画像用に設計されており、HDR画像の品質に対する人間の認識とよく一致しない。
本稿では,HDR画像からLDR画像のスタックを分解するために,単純な逆表示モデルを用いるHDR品質指標のファミリを提案する。
論文 参考訳(メタデータ) (2023-10-19T16:32:18Z) - Self-Supervised High Dynamic Range Imaging with Multi-Exposure Images in
Dynamic Scenes [58.66427721308464]
Selfは、訓練中にダイナミックなマルチ露光画像のみを必要とする自己教師型再構成手法である。
Selfは最先端の自己管理手法に対して優れた結果を出し、教師付き手法に匹敵するパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-10-03T07:10:49Z) - SMAE: Few-shot Learning for HDR Deghosting with Saturation-Aware Masked
Autoencoders [97.64072440883392]
そこで本研究では,SSHDRと呼ばれる2段階の訓練を通した短距離HDRイメージングを実現するための,新しい半教師付きアプローチを提案する。
以前の方法とは異なり、コンテンツを直接回復し、ゴーストを同時に除去することは、最適に達成することが難しい。
実験により、SSHDRは異なるデータセットの内外における定量的かつ定性的に最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-04-14T03:42:51Z) - GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild [74.52723408793648]
そこで本研究では,HDR画像の生成モデルを構築するための第1の手法について述べる。
鍵となる考え方は、GAN(Generative Adversarial Network)を訓練して、様々な露光下でLDRに投影された場合、実際のLDR画像と区別できないHDR画像を生成することである。
実験の結果,GlowGANはランドスケープ,雷,窓など多くの難題において,光現実的HDR画像を合成できることがわかった。
論文 参考訳(メタデータ) (2022-11-22T15:42:08Z) - Self-supervised HDR Imaging from Motion and Exposure Cues [14.57046548797279]
本稿では,学習可能なHDR推定のための新たな自己教師型アプローチを提案する。
実験の結果,提案手法を用いて訓練したHDRモデルは,全監督下で訓練したモデルと性能の競争力を発揮することがわかった。
論文 参考訳(メタデータ) (2022-03-23T10:22:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。