論文の概要: Convolutional Neural Networks as a Model of the Visual System: Past,
Present, and Future
- arxiv url: http://arxiv.org/abs/2001.07092v2
- Date: Mon, 10 Feb 2020 11:37:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-08 05:05:07.214879
- Title: Convolutional Neural Networks as a Model of the Visual System: Past,
Present, and Future
- Title(参考訳): 視覚システムのモデルとしての畳み込みニューラルネットワーク:過去,現在,未来
- Authors: Grace W. Lindsay
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は、生物学的視覚の研究の初期の発見に触発された。
CNNはその後、コンピュータビジョンと、視覚タスクにおける神経活動と行動の両方の最先端モデルにおいて、成功したツールとなった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Convolutional neural networks (CNNs) were inspired by early findings in the
study of biological vision. They have since become successful tools in computer
vision and state-of-the-art models of both neural activity and behavior on
visual tasks. This review highlights what, in the context of CNNs, it means to
be a good model in computational neuroscience and the various ways models can
provide insight. Specifically, it covers the origins of CNNs and the methods by
which we validate them as models of biological vision. It then goes on to
elaborate on what we can learn about biological vision by understanding and
experimenting on CNNs and discusses emerging opportunities for the use of CNNS
in vision research beyond basic object recognition.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は、生物学的視覚の研究の初期の発見に触発された。
その後、コンピュータービジョンと、視覚タスクにおける神経活動と行動の両方の最先端モデルにおいて成功している。
このレビューは、cnnの文脈において、計算神経科学の優れたモデルであり、モデルが洞察を提供する様々な方法であることを意味することを強調する。
具体的には、CNNの起源と、それらを生物学的視覚のモデルとして検証する手法について述べる。
その後、CNNの理解と実験によって生物の視覚について何が学べるかを詳しく研究し、基本的な物体認識を超えた視覚研究にCNNSを使用する新たな機会について論じる。
関連論文リスト
- Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
時間的年齢に関する脳年齢の増加は、神経変性と認知低下に対する脆弱性の増加を反映している。
NeuroVNNは、時系列年齢を予測するために、健康な人口の回帰モデルとして事前訓練されている。
NeuroVNNは、脳の年齢に解剖学的解釈性を加え、任意の脳のアトラスに従って計算されたデータセットへの転移を可能にする「スケールフリー」特性を持つ。
論文 参考訳(メタデータ) (2024-02-12T14:46:31Z) - Symbiosis of an artificial neural network and models of biological
neurons: training and testing [0.0]
生体ニューロンの数学的モデルからなる人工ニューラルネットワーク(ANN)の特徴を作成・同定する可能性を示す。
FitzHugh--Nagumo (FHN) システムは、単純化されたニューロン活性を示すモデルの一例として用いられる。
論文 参考訳(メタデータ) (2023-02-03T10:06:54Z) - BI AVAN: Brain inspired Adversarial Visual Attention Network [67.05560966998559]
機能的脳活動から直接人間の視覚的注意を特徴付ける脳誘発対人視覚注意ネットワーク(BI-AVAN)を提案する。
本モデルは,人間の脳が監督されていない方法で焦点を絞った映画フレーム内の視覚的物体を識別・発見するために,注意関連・無視対象間の偏りのある競合過程を模倣する。
論文 参考訳(メタデータ) (2022-10-27T22:20:36Z) - Adapting Brain-Like Neural Networks for Modeling Cortical Visual
Prostheses [68.96380145211093]
皮質補綴は視覚野に移植された装置で、電気的にニューロンを刺激することで失った視力を回復しようとする。
現在、これらのデバイスが提供する視覚は限られており、刺激による視覚知覚を正確に予測することはオープンな課題である。
我々は、視覚システムの有望なモデルとして登場した「脳様」畳み込みニューラルネットワーク(CNN)を活用することで、この問題に対処することを提案する。
論文 参考訳(メタデータ) (2022-09-27T17:33:19Z) - Formal Conceptual Views in Neural Networks [0.0]
本稿では,ニューラルネットワークの概念的視点,特に多値・記号的視点の2つの概念を紹介する。
我々は、ImageNetとFruit-360データセットの異なる実験を通して、新しいビューの概念的表現性をテストする。
本研究では,ニューロンからの人間の理解可能なルールの帰納的学習に概念的視点が適用可能であることを実証する。
論文 参考訳(メタデータ) (2022-09-27T16:38:24Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Prune and distill: similar reformatting of image information along rat
visual cortex and deep neural networks [61.60177890353585]
深部畳み込み神経ネットワーク(CNN)は、脳の機能的類似、視覚野の腹側流の優れたモデルを提供することが示されている。
ここでは、CNNまたは視覚野の内部表現で知られているいくつかの顕著な統計的パターンについて考察する。
我々は、CNNと視覚野が、オブジェクト表現の次元展開/縮小と画像情報の再構成と、同様の密接な関係を持っていることを示す。
論文 参考訳(メタデータ) (2022-05-27T08:06:40Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Deep Reinforcement Learning Models Predict Visual Responses in the
Brain: A Preliminary Result [1.0323063834827415]
強化学習を用いてニューラルネットワークモデルをトレーニングし、3Dコンピュータゲームをプレイします。
これらの強化学習モデルは、初期視覚領域において、神経応答予測精度のスコアを得る。
対照的に、教師付きニューラルネットワークモデルでは、より高い視覚領域において、より優れた神経応答予測が得られる。
論文 参考訳(メタデータ) (2021-06-18T13:10:06Z) - Neural Networks, Artificial Intelligence and the Computational Brain [0.0]
本研究では、生物ニューロンのシミュレータとしてのANNの概念を検討する。
また、なぜ脳のような知能が必要なのか、そしてそれが計算フレームワークとどのように異なるのかを探求する。
論文 参考訳(メタデータ) (2020-12-25T05:56:41Z) - An Information-theoretic Visual Analysis Framework for Convolutional
Neural Networks [11.15523311079383]
CNNモデルから抽出可能なデータを整理するデータモデルを提案する。
次に、異なる状況下でエントロピーを計算する2つの方法を提案する。
我々は,モデル内の情報変化量をインタラクティブに探索する視覚解析システムCNNSlicerを開発した。
論文 参考訳(メタデータ) (2020-05-02T21:36:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。