A Neural Architecture for Person Ontology population
- URL: http://arxiv.org/abs/2001.08013v1
- Date: Wed, 22 Jan 2020 13:49:14 GMT
- Title: A Neural Architecture for Person Ontology population
- Authors: Balaji Ganesan, Riddhiman Dasgupta, Akshay Parekh, Hima Patel, and
Berthold Reinwald
- Abstract summary: We present a system for automatically populating a person ontology graph from unstructured data using neural models.
We introduce a new dataset for these tasks and discuss our results.
- Score: 4.141401146586342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A person ontology comprising concepts, attributes and relationships of people
has a number of applications in data protection, didentification, population of
knowledge graphs for business intelligence and fraud prevention. While
artificial neural networks have led to improvements in Entity Recognition,
Entity Classification, and Relation Extraction, creating an ontology largely
remains a manual process, because it requires a fixed set of semantic relations
between concepts. In this work, we present a system for automatically
populating a person ontology graph from unstructured data using neural models
for Entity Classification and Relation Extraction. We introduce a new dataset
for these tasks and discuss our results.
Related papers
- LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEG is a holistic visual semantic that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge.
During fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training.
These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models.
arXiv Detail & Related papers (2023-09-24T05:43:19Z) - Language Knowledge-Assisted Representation Learning for Skeleton-Based
Action Recognition [71.35205097460124]
How humans understand and recognize the actions of others is a complex neuroscientific problem.
LA-GCN proposes a graph convolution network using large-scale language models (LLM) knowledge assistance.
arXiv Detail & Related papers (2023-05-21T08:29:16Z) - Graph Neural Operators for Classification of Spatial Transcriptomics
Data [1.408706290287121]
We propose a study incorporating various graph neural network approaches to validate the efficacy of applying neural operators towards prediction of brain regions in mouse brain tissue samples.
We were able to achieve an F1 score of nearly 72% for the graph neural operator approach which outperformed all baseline and other graph network approaches.
arXiv Detail & Related papers (2023-02-01T18:32:06Z) - Persistence-based operators in machine learning [62.997667081978825]
We introduce a class of persistence-based neural network layers.
Persistence-based layers allow the users to easily inject knowledge about symmetries respected by the data, are equipped with learnable weights, and can be composed with state-of-the-art neural architectures.
arXiv Detail & Related papers (2022-12-28T18:03:41Z) - Neuro-symbolic computing with spiking neural networks [0.6035125735474387]
We extend previous work on spike-based graph algorithms by demonstrating how symbolic and multi-relational information can be encoded using spiking neurons.
The introduced framework is enabled by combining the graph embedding paradigm and the recent progress in training spiking neural networks using error backpropagation.
arXiv Detail & Related papers (2022-08-04T10:49:34Z) - Relational representation learning with spike trains [0.0]
We present a model that allows us to learn spike train-based embeddings of knowledge graphs, requiring only one neuron per graph element by fully utilizing the temporal domain of spike patterns.
In general, the presented results show how relational knowledge can be integrated into spike-based systems, opening up the possibility of merging event-based computing and data to build powerful and energy efficient artificial intelligence applications and reasoning systems.
arXiv Detail & Related papers (2022-05-18T18:00:37Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
We describe an implementation of the common model of cognition grounded in neural generative coding and holographic associative memory.
The proposed system creates the groundwork for developing agents that learn continually from diverse tasks as well as model human performance at larger scales.
arXiv Detail & Related papers (2021-05-15T22:55:23Z) - Neural-Symbolic Relational Reasoning on Graph Models: Effective Link
Inference and Computation from Knowledge Bases [0.5669790037378094]
We propose a neural-symbolic graph which applies learning over all the paths by feeding the model with the embedding of the minimal network of the knowledge graph containing such paths.
By learning to produce representations for entities and facts corresponding to word embeddings, we show how the model can be trained end-to-end to decode these representations and infer relations between entities in a relational approach.
arXiv Detail & Related papers (2020-05-05T22:46:39Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
We study question answering over a dynamic textual environment.
We develop a graph neural network over the constructed graph, and train the model in an end-to-end manner.
arXiv Detail & Related papers (2020-04-25T04:53:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.