Universal Translationally-Invariant Hamiltonians
- URL: http://arxiv.org/abs/2001.08050v1
- Date: Wed, 22 Jan 2020 15:10:29 GMT
- Title: Universal Translationally-Invariant Hamiltonians
- Authors: Stephen Piddock and Johannes Bausch
- Abstract summary: We extend the notion of universal quantum Hamiltonians to the setting of translationally-invariant systems.
We show that qubit Hamiltonians consisting of Heisenberg or XY interactions of varying interaction strengths are universal.
- Score: 8.020742121274418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we extend the notion of universal quantum Hamiltonians to the
setting of translationally-invariant systems. We present a construction that
allows a two-dimensional spin lattice with nearest-neighbour interactions, open
boundaries, and translational symmetry to simulate any local target
Hamiltonian---i.e. to reproduce the whole of the target system within its
low-energy subspace to arbitrarily-high precision. Since this implies the
capability to simulate non-translationally-invariant many-body systems with
translationally-invariant couplings, any effect such as characteristics
commonly associated to systems with external disorder, e.g. many-body
localization, can also occur within the low-energy Hilbert space sector of
translationally-invariant systems. Then we sketch a variant of the universal
lattice construction optimized for simulating translationally-invariant target
Hamiltonians. Finally we prove that qubit Hamiltonians consisting of Heisenberg
or XY interactions of varying interaction strengths restricted to the edges of
a connected translationally-invariant graph embedded in $\mathbb{R}^D$ are
universal, and can efficiently simulate any geometrically local Hamiltonian in
$\mathbb{R}^D$.
Related papers
- Equivariant Graph Network Approximations of High-Degree Polynomials for Force Field Prediction [62.05532524197309]
equivariant deep models have shown promise in accurately predicting atomic potentials and force fields in molecular dynamics simulations.
In this work, we analyze the equivariant functions for equivariant architecture, and introduce a novel equivariant network, named PACE.
As experimented in commonly used benchmarks, PACE demonstrates state-of-the-art performance in predicting atomic energy and force fields.
arXiv Detail & Related papers (2024-11-06T19:34:40Z) - Non-Universality from Conserved Superoperators in Unitary Circuits [0.0]
An important result in the theory of quantum control is the "universality" of $2$-local unitary gates.
Recent results have shown that universality can break down in the presence of symmetries.
arXiv Detail & Related papers (2024-09-17T17:59:42Z) - Relaxing Continuous Constraints of Equivariant Graph Neural Networks for Physical Dynamics Learning [39.25135680793105]
We propose a general Discrete Equivariant Graph Neural Network (DEGNN) that guarantees equivariance to a given discrete point group.
Specifically, we show that such discrete equivariant message passing could be constructed by transforming geometric features into permutation-invariant embeddings.
We show that DEGNN is data efficient, learning with less data, and can generalize across scenarios such as unobserved orientation.
arXiv Detail & Related papers (2024-06-24T03:37:51Z) - Quantum Random Walks and Quantum Oscillator in an Infinite-Dimensional Phase Space [45.9982965995401]
We consider quantum random walks in an infinite-dimensional phase space constructed using Weyl representation of the coordinate and momentum operators.
We find conditions for their strong continuity and establish properties of their generators.
arXiv Detail & Related papers (2024-06-15T17:39:32Z) - On reconstruction of states from evolution induced by quantum dynamical
semigroups perturbed by covariant measures [50.24983453990065]
We show the ability to restore states of quantum systems from evolution induced by quantum dynamical semigroups perturbed by covariant measures.
Our procedure describes reconstruction of quantum states transmitted via quantum channels and as a particular example can be applied to reconstruction of photonic states transmitted via optical fibers.
arXiv Detail & Related papers (2023-12-02T09:56:00Z) - Renormalization group and spectra of the generalized P\"oschl-Teller
potential [0.0]
We study the P"oschl-Teller potential $V(x) = alpha2 g_s sinh-2(alpha x) + alpha2 g_c cosh-2(alpha x)$, for every value of the dimensionless parameters $g_s$ and $g_c singularity.
We show that supersymmetry of the potential, when present, is also spontaneously broken, along with conformal symmetry.
arXiv Detail & Related papers (2023-08-08T21:44:55Z) - $O(N^2)$ Universal Antisymmetry in Fermionic Neural Networks [107.86545461433616]
We propose permutation-equivariant architectures, on which a determinant Slater is applied to induce antisymmetry.
FermiNet is proved to have universal approximation capability with a single determinant, namely, it suffices to represent any antisymmetric function.
We substitute the Slater with a pairwise antisymmetry construction, which is easy to implement and can reduce the computational cost to $O(N2)$.
arXiv Detail & Related papers (2022-05-26T07:44:54Z) - Equivariant Graph Mechanics Networks with Constraints [83.38709956935095]
We propose Graph Mechanics Network (GMN) which is efficient, equivariant and constraint-aware.
GMN represents, by generalized coordinates, the forward kinematics information (positions and velocities) of a structural object.
Extensive experiments support the advantages of GMN compared to the state-of-the-art GNNs in terms of prediction accuracy, constraint satisfaction and data efficiency.
arXiv Detail & Related papers (2022-03-12T14:22:14Z) - Rotationally-Invariant Circuits: Universality with the exchange
interaction and two ancilla qubits [0.6445605125467572]
We study qubit circuits formed from k-local rotationally-invariant unitaries.
We show that, using a pair of ancilla qubits, any rotationally-invariant unitary can be realized with the Heisenberg exchange interaction.
arXiv Detail & Related papers (2022-02-04T04:22:21Z) - Strongly Universal Hamiltonian Simulators [0.38073142980733]
A universal family of Hamiltonians can be used to simulate any local Hamiltonian.
We provide an efficient construction by which these universal families are in fact "strongly" universal.
arXiv Detail & Related papers (2021-02-05T04:18:38Z) - Integrability of $1D$ Lindbladians from operator-space fragmentation [0.0]
We introduce families of one-dimensional Lindblad equations describing open many-particle quantum systems.
We show that Lindbladians featuring integrable operator-space fragmentation can be found in spin chains with arbitrary local physical dimension.
arXiv Detail & Related papers (2020-09-24T15:10:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.