Inverse Reinforcement Learning Based Stochastic Driver Behavior Learning
- URL: http://arxiv.org/abs/2107.06344v2
- Date: Thu, 15 Jul 2021 04:03:59 GMT
- Title: Inverse Reinforcement Learning Based Stochastic Driver Behavior Learning
- Authors: Mehmet Fatih Ozkan, Abishek Joseph Rocque, Yao Ma
- Abstract summary: Drivers have unique and rich driving behaviors when operating vehicles in traffic.
This paper presents a novel driver behavior learning approach that captures the uniqueness and richness of human driver behavior in realistic driving scenarios.
- Score: 3.4979173592795374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drivers have unique and rich driving behaviors when operating vehicles in
traffic. This paper presents a novel driver behavior learning approach that
captures the uniqueness and richness of human driver behavior in realistic
driving scenarios. A stochastic inverse reinforcement learning (SIRL) approach
is proposed to learn a distribution of cost function, which represents the
richness of the human driver behavior with a given set of driver-specific
demonstrations. Evaluations are conducted on the realistic driving data
collected from the 3D driver-in-the-loop driving simulation. The results show
that the learned stochastic driver model is capable of expressing the richness
of the human driving strategies under different realistic driving scenarios.
Compared to the deterministic baseline driver model, the results reveal that
the proposed stochastic driver behavior model can better replicate the driver's
unique and rich driving strategies in a variety of traffic conditions.
Related papers
- Adaptive Autopilot: Constrained DRL for Diverse Driving Behaviors [12.812518632907771]
This study introduces adaptive autopilot (AA), a unique framework utilizing constrained-deep reinforcement learning (C-DRL)
AA aims to safely emulate human driving to reduce the necessity for driver intervention.
arXiv Detail & Related papers (2024-07-02T13:08:01Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
Nonobjective driving experience is difficult to model.
In this paper, we propose a FeedBack Loop Network (FBLNet) which attempts to model the driving experience accumulation procedure.
Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - A Hybrid Rule-Based and Data-Driven Approach to Driver Modeling through
Particle Filtering [6.9485501711137525]
We propose a methodology that combines rule-based modeling with data-driven learning.
Our results show that driver models based on our hybrid rule-based and data-driven approach can accurately capture real-world driving behavior.
arXiv Detail & Related papers (2021-08-29T11:07:14Z) - Markov Switching Model for Driver Behavior Prediction: Use cases on
Smartphones [4.576379639081977]
We present a driver behavior switching model validated by a low-cost data collection solution using smartphones.
The proposed model is validated using a real dataset to predict the driver behavior in short duration periods.
arXiv Detail & Related papers (2021-08-29T09:54:05Z) - Learning to drive from a world on rails [78.28647825246472]
We learn an interactive vision-based driving policy from pre-recorded driving logs via a model-based approach.
A forward model of the world supervises a driving policy that predicts the outcome of any potential driving trajectory.
Our method ranks first on the CARLA leaderboard, attaining a 25% higher driving score while using 40 times less data.
arXiv Detail & Related papers (2021-05-03T05:55:30Z) - Action-Based Representation Learning for Autonomous Driving [8.296684637620551]
We propose to use action-based driving data for learning representations.
Our experiments show that an affordance-based driving model pre-trained with this approach can leverage a relatively small amount of weakly annotated imagery.
arXiv Detail & Related papers (2020-08-21T10:49:13Z) - A Probabilistic Framework for Imitating Human Race Driver Behavior [31.524303667746643]
We propose Probabilistic Modeling of Driver behavior (ProMoD), a modular framework which splits the task of driver behavior modeling into multiple modules.
A global target trajectory distribution is learned with Probabilistic Movement Primitives, clothoids are utilized for local path generation, and the corresponding choice of actions is performed by a neural network.
Experiments in a simulated car racing setting show considerable advantages in imitation accuracy and robustness compared to other imitation learning algorithms.
arXiv Detail & Related papers (2020-01-22T20:06:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.