Deep learning-based prediction of response to HER2-targeted neoadjuvant
chemotherapy from pre-treatment dynamic breast MRI: A multi-institutional
validation study
- URL: http://arxiv.org/abs/2001.08570v1
- Date: Wed, 22 Jan 2020 17:54:24 GMT
- Title: Deep learning-based prediction of response to HER2-targeted neoadjuvant
chemotherapy from pre-treatment dynamic breast MRI: A multi-institutional
validation study
- Authors: Nathaniel Braman, Mohammed El Adoui, Manasa Vulchi, Paulette Turk,
Maryam Etesami, Pingfu Fu, Kaustav Bera, Stylianos Drisis, Vinay Varadan,
Donna Plecha, Mohammed Benjelloun, Jame Abraham, Anant Madabhushi
- Abstract summary: Predicting response to neoadjuvant therapy is a vexing challenge in breast cancer.
Deep learning could provide an effective and reliable tool to guide targeted therapy in breast cancer.
- Score: 0.5149010213385097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting response to neoadjuvant therapy is a vexing challenge in breast
cancer. In this study, we evaluate the ability of deep learning to predict
response to HER2-targeted neo-adjuvant chemotherapy (NAC) from pre-treatment
dynamic contrast-enhanced (DCE) MRI acquired prior to treatment. In a
retrospective study encompassing DCE-MRI data from a total of 157 HER2+ breast
cancer patients from 5 institutions, we developed and validated a deep learning
approach for predicting pathological complete response (pCR) to HER2-targeted
NAC prior to treatment. 100 patients who received HER2-targeted neoadjuvant
chemotherapy at a single institution were used to train (n=85) and tune (n=15)
a convolutional neural network (CNN) to predict pCR. A multi-input CNN
leveraging both pre-contrast and late post-contrast DCE-MRI acquisitions was
identified to achieve optimal response prediction within the validation set
(AUC=0.93). This model was then tested on two independent testing cohorts with
pre-treatment DCE-MRI data. It achieved strong performance in a 28 patient
testing set from a second institution (AUC=0.85, 95% CI 0.67-1.0, p=.0008) and
a 29 patient multicenter trial including data from 3 additional institutions
(AUC=0.77, 95% CI 0.58-0.97, p=0.006). Deep learning-based response prediction
model was found to exceed a multivariable model incorporating predictive
clinical variables (AUC < .65 in testing cohorts) and a model of
semi-quantitative DCE-MRI pharmacokinetic measurements (AUC < .60 in testing
cohorts). The results presented in this work across multiple sites suggest that
with further validation deep learning could provide an effective and reliable
tool to guide targeted therapy in breast cancer, thus reducing overtreatment
among HER2+ patients.
Related papers
- Enhancing Trust in Clinically Significant Prostate Cancer Prediction with Multiple Magnetic Resonance Imaging Modalities [61.36288157482697]
In the United States, prostate cancer is the second leading cause of deaths in males with a predicted 35,250 deaths in 2024.
In this paper, we investigate combining multiple MRI modalities to train a deep learning model to enhance trust in the models for clinically significant prostate cancer prediction.
arXiv Detail & Related papers (2024-11-07T12:48:27Z) - TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
We propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures.
We empirically validate emphTopoTxR using the VICTRE phantom breast dataset.
Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na"ive imaging.
arXiv Detail & Related papers (2024-11-05T19:35:10Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Automated Prediction of Breast Cancer Response to Neoadjuvant Chemotherapy from DWI Data [2.321323878201932]
We propose a deep learning model employing "Size-Adaptive Lesion Weighting" for automatic DWI tumor segmentation.
Our model matches human experts in pCR prediction pre-NAC with an area under the curve (AUC) of 0.76 vs. 0.796, and surpasses standard automated methods mid-NAC.
arXiv Detail & Related papers (2024-04-07T20:15:40Z) - Prediction of Breast Cancer Recurrence Risk Using a Multi-Model Approach
Integrating Whole Slide Imaging and Clinicopathologic Features [0.6679306163028237]
The aim of this study was to develop a multi-model approach integrating the analysis of whole slide images and clinicopathologic data to predict associated breast cancer recurrence risks.
The proposed novel methodology uses convolutional neural networks for feature extraction and vision transformers for contextual aggregation.
arXiv Detail & Related papers (2024-01-28T23:33:56Z) - Experts' cognition-driven ensemble deep learning for external validation of predicting pathological complete response to neoadjuvant chemotherapy from histological images in breast cancer [3.811184252495269]
We propose an experts' cognition-driven ensemble deep learning (ECDEDL) approach.
ECDEDL was quite effective for external validation of predicting pCR to NAC from histological images in breast cancer.
arXiv Detail & Related papers (2023-06-19T09:48:24Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - PD-DWI: Predicting response to neoadjuvant chemotherapy in invasive
breast cancer with Physiologically-Decomposed Diffusion-Weighted MRI
machine-learning model [0.0]
We introduce PD-DWI, a physiologically decomposed DWI machine-learning model to predict pCR from DWI and clinical data.
Our model substantially improves the area under the curve (AUC), compared to the current best result on the leaderboard.
arXiv Detail & Related papers (2022-06-12T08:59:49Z) - Machine Learning for Real-World Evidence Analysis of COVID-19
Pharmacotherapy [0.0]
Real-world data generated from clinical practice can be used to analyze the real-world evidence of COVID-19 pharmacotherapy.
Machine learning (ML) methods are being used and are promising tools for precision medicine.
In this study, ML methods are applied to study the efficacy of therapies on COVID-19 hospital admissions in the Valencian Region of Spain.
arXiv Detail & Related papers (2021-07-19T16:28:54Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.