論文の概要: Machine learning based co-creative design framework
- arxiv url: http://arxiv.org/abs/2001.08791v1
- Date: Thu, 23 Jan 2020 20:18:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-07 12:36:27.624991
- Title: Machine learning based co-creative design framework
- Title(参考訳): 機械学習に基づく共同創造設計フレームワーク
- Authors: Brian Quanz, Wei Sun, Ajay Deshpande, Dhruv Shah, Jae-eun Park
- Abstract要約: 本稿では,複数の機械学習技術を組み合わせたフレキシブルで共同創造的なフレームワークを提案する。
本研究では, パーフュームボトル設計ケーススタディにおいて, 人体評価, 定量および定性分析を含む可能性を示す。
- 参考スコア(独自算出の注目度): 7.556065634179618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a flexible, co-creative framework bringing together multiple
machine learning techniques to assist human users to efficiently produce
effective creative designs. We demonstrate its potential with a perfume bottle
design case study, including human evaluation and quantitative and qualitative
analyses.
- Abstract(参考訳): 本稿では,複数の機械学習技術を組み合わせて,効果的な創造的デザインを効率的に作成するためのフレキシブルで共創的なフレームワークを提案する。
本研究では, パーフュームボトル設計ケーススタディにおいて, 人体評価と定量および定性分析を含む可能性を示す。
関連論文リスト
- Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - An Artificial Intelligence Approach for Interpreting Creative Combinational Designs [1.3948357001626264]
組み合わせ創造性は、よく知られたアイデアのブレンドを含む創造性の一形態である。
本研究は,創造的デザインを構成する「基礎」と「付加的」成分を具体的に識別する計算解釈に焦点を当てた。
論文 参考訳(メタデータ) (2024-05-08T11:47:32Z) - I-Design: Personalized LLM Interior Designer [57.00412237555167]
I-Designはパーソナライズされたインテリアデザイナで、自然言語によるコミュニケーションを通じて設計目標の生成と視覚化を可能にする。
I-Designは、対話や論理的推論に従事する大きな言語モデルエージェントのチームから始まる。
最終的な設計は、既存のオブジェクトデータベースから資産を取り出し、統合することで、3Dで構築されます。
論文 参考訳(メタデータ) (2024-04-03T16:17:53Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
本調査では,コンピュータ支援設計における学習手法の概要について概観する。
類似性解析と検索、2Dおよび3DCADモデル合成、点雲からのCAD生成を含む。
ベンチマークデータセットとその特性の完全なリストと、この領域の研究を推進しているオープンソースコードを提供する。
論文 参考訳(メタデータ) (2024-02-27T17:11:35Z) - Can AI Be as Creative as Humans? [84.43873277557852]
理論的には、AIは人間の創造者によって生成されたデータに適切に適合できるという条件の下で、人間と同じくらい創造的になれることを証明しています。
AIの創造性に関する議論は、十分な量のデータに適合する能力の問題に縮小されている。
論文 参考訳(メタデータ) (2024-01-03T08:49:12Z) - Human Machine Co-Creation. A Complementary Cognitive Approach to
Creative Character Design Process Using GANs [0.0]
2つのニューラルネットワークが競合し、元のデータセットと区別できない新しい視覚コンテンツを生成する。
提案するアプローチは、知覚、理解、作成のプロセスを伝えることを目的としている。
マシンが生成した概念は、キャラクターデザイナーが新しいキャラクターを概念化するためのローンチプラットフォームとして使用される。
論文 参考訳(メタデータ) (2023-11-23T12:18:39Z) - CHAI-DT: A Framework for Prompting Conversational Generative AI Agents
to Actively Participate in Co-Creation [0.0]
本稿では,グループ中心の共創型フレームワークにおける生成AIモデルの利用の可能性を探る。
従来の「人間から人間への」ファシリテーションと指導にインスパイアされた手法を用いた会話生成AIエージェントのための新しいプロンプト手法を提案する。
論文 参考訳(メタデータ) (2023-05-05T21:25:35Z) - Automatic Creativity Measurement in Scratch Programs Across Modalities [6.242018846706069]
我々は、創造性の公式な尺度の定義から、この尺度を実践的な領域に適用することまで、効率的に計算できる旅を行ないます。
我々は、人気のあるビジュアルプログラミング言語であるScratchのプロジェクトに対して、一般的な測度を適用した。
我々は、Scratchプロジェクトの創造性を予測し、人間の専門家による創造性評価に基づいてトレーニングし、評価する機械学習モデルを設計した。
論文 参考訳(メタデータ) (2022-11-07T10:43:36Z) - Unadversarial Examples: Designing Objects for Robust Vision [100.4627585672469]
現代の機械学習アルゴリズムの感度を入力摂動に活かし、「ロバストオブジェクト」を設計するフレームワークを開発しています。
標準ベンチマークから(シミュレーション中)ロボット工学まで,さまざまな視覚ベースのタスクに対するフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2020-12-22T18:26:07Z) - Guru, Partner, or Pencil Sharpener? Understanding Designers' Attitudes
Towards Intelligent Creativity Support Tools [4.812445272764651]
創造支援ツール(CST)は、人間の創造性を高めることを目的としているが、創造性の深い個人的、主観的な性質は、普遍的な支援ツールの設計を困難にしている。
人工知能(AI)と機械学習(ML)技術は、個人の創造スタイルを学習し、適応する「知的な」CSTを作成する手段を提供する。
本稿では,AIツールとの協調に対する肯定的かつ実践的な態度を示す,プロのデザイナーを対象にした調査結果について述べる。
論文 参考訳(メタデータ) (2020-07-09T14:52:52Z) - A Competence-aware Curriculum for Visual Concepts Learning via Question
Answering [95.35905804211698]
本稿では,視覚概念学習のための質問応答型カリキュラムを提案する。
視覚概念を学習するためのニューラルシンボリックな概念学習者と学習プロセスを導くための多次元項目応答理論(mIRT)モデルを設計する。
CLEVRの実験結果から,コンピテンスを意識したカリキュラムにより,提案手法は最先端のパフォーマンスを実現することが示された。
論文 参考訳(メタデータ) (2020-07-03T05:08:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。