論文の概要: Active Learning for Entity Alignment
- arxiv url: http://arxiv.org/abs/2001.08943v3
- Date: Wed, 17 Mar 2021 15:10:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-07 04:59:52.761266
- Title: Active Learning for Entity Alignment
- Title(参考訳): エンティティアライメントのためのアクティブラーニング
- Authors: Max Berrendorf and Evgeniy Faerman and Volker Tresp
- Abstract要約: エンティティアライメントのラベル付けが、クラスラベルを単一インスタンスに割り当てることとどのように異なるかを示す。
主な発見の1つは、効率的な事前計算とデプロイが容易な受動的学習アプローチが、アクティブな学習戦略に匹敵するパフォーマンスを達成することである。
- 参考スコア(独自算出の注目度): 25.234850999782953
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose a novel framework for the labeling of entity
alignments in knowledge graph datasets. Different strategies to select
informative instances for the human labeler build the core of our framework. We
illustrate how the labeling of entity alignments is different from assigning
class labels to single instances and how these differences affect the labeling
efficiency. Based on these considerations we propose and evaluate different
active and passive learning strategies. One of our main findings is that
passive learning approaches, which can be efficiently precomputed and deployed
more easily, achieve performance comparable to the active learning strategies.
- Abstract(参考訳): 本稿では,知識グラフデータセットにおけるエンティティアライメントのラベル付けのための新しいフレームワークを提案する。
ヒューマンラベラーの情報インスタンスを選択するためのさまざまな戦略が、私たちのフレームワークのコアを構築します。
エンティティアライメントのラベリングが、単一のインスタンスにクラスラベルを割り当てることと、これらの違いがラベリング効率にどのように影響するかを説明します。
これらの考察に基づき,様々な学習戦略を提案し,評価する。
主な発見の1つは、効率的な事前計算とデプロイが容易な受動的学習アプローチが、アクティブな学習戦略に匹敵するパフォーマンスを達成することである。
関連論文リスト
- BAL: Balancing Diversity and Novelty for Active Learning [53.289700543331925]
多様な不確実なデータのバランスをとるために適応的なサブプールを構築する新しいフレームワークであるBalancing Active Learning (BAL)を導入する。
我々のアプローチは、広く認識されているベンチマークにおいて、確立されたすべてのアクティブな学習方法より1.20%優れています。
論文 参考訳(メタデータ) (2023-12-26T08:14:46Z) - Multi-Label Knowledge Distillation [86.03990467785312]
本稿では,新しい多ラベル知識蒸留法を提案する。
一方、マルチラベル学習問題をバイナリ分類問題に分割することにより、ロジットからの情報的意味知識を利用する。
一方,ラベルワイド埋め込みの構造情報を活用することにより,学習した特徴表現の識別性を向上する。
論文 参考訳(メタデータ) (2023-08-12T03:19:08Z) - Active Teacher for Semi-Supervised Object Detection [80.10937030195228]
半教師対象検出(SSOD)のための能動教師と呼ばれる新しいアルゴリズムを提案する。
Active Teacherは、教師/学生のフレームワークを反復的なバージョンに拡張し、ラベルセットを部分的に段階的に拡張し、ラベルなし例の3つの重要な要素を評価する。
この設計により、Active Teacherは、擬似ラベルの品質を改善しながら、限られたラベル情報の効果を最大化することができる。
論文 参考訳(メタデータ) (2023-03-15T03:59:27Z) - Exploiting Diversity of Unlabeled Data for Label-Efficient
Semi-Supervised Active Learning [57.436224561482966]
アクティブラーニング(英: Active Learning)は、ラベリングのための最も重要なサンプルを選択することで、高価なラベリングの問題に対処する研究分野である。
アクティブな学習環境における初期ラベル付けのための最も情報性の高いサンプル群を選択するために,多様性に基づく新しい初期データセット選択アルゴリズムを提案する。
また、一貫性に基づく埋め込みの多様性に基づくサンプリングを用いた、新しいアクティブな学習クエリ戦略を提案する。
論文 参考訳(メタデータ) (2022-07-25T16:11:55Z) - Dual Path Structural Contrastive Embeddings for Learning Novel Objects [6.979491536753043]
近年の研究では、優れた特徴空間の情報を取得することが、少数のタスクにおいて良好なパフォーマンスを達成するための効果的な解決法であることが示されている。
特徴表現と分類器を学習するタスクを分離する,単純だが効果的なパラダイムを提案する。
提案手法は, インダクティブ推論とトランスダクティブ推論のいずれにおいても, 標準および一般化された少数ショット問題に対して有望な結果が得られる。
論文 参考訳(メタデータ) (2021-12-23T04:43:31Z) - CLLD: Contrastive Learning with Label Distance for Text Classificatioin [0.6299766708197883]
コントラストクラスを学習するためのCLLD(Contrastive Learning with Label Distance)を提案する。
CLLDは、ラベルの割り当てに繋がる微妙な違いの中で、柔軟性を保証する。
実験の結果,学習したラベル距離は,クラス間の対立性を緩和することが示唆された。
論文 参考訳(メタデータ) (2021-10-25T07:07:14Z) - Multi-Label Image Classification with Contrastive Learning [57.47567461616912]
コントラスト学習の直接適用は,複数ラベルの場合においてほとんど改善できないことを示す。
完全教師付き環境下でのコントラスト学習を用いたマルチラベル分類のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-24T15:00:47Z) - SLADE: A Self-Training Framework For Distance Metric Learning [75.54078592084217]
我々は、追加のラベルのないデータを活用することで、検索性能を向上させるための自己学習フレームワークSLADEを提案する。
まず、ラベル付きデータに基づいて教師モデルをトレーニングし、ラベルなしデータに対して擬似ラベルを生成する。
次に、最終機能埋め込みを生成するために、ラベルと擬似ラベルの両方で学生モデルをトレーニングします。
論文 参考訳(メタデータ) (2020-11-20T08:26:10Z) - Learning to Learn in a Semi-Supervised Fashion [41.38876517851431]
本稿では,ラベル付きデータとラベルなしデータの両方から半教師付き学習を行うメタ学習手法を提案する。
我々の戦略は、完全に教師付き学習タスクに適用可能な自己教師付き学習スキームとみなすことができる。
論文 参考訳(メタデータ) (2020-08-25T17:59:53Z) - A Comprehensive Benchmark Framework for Active Learning Methods in
Entity Matching [17.064993611446898]
本稿では,EMのための統合型アクティブラーニングベンチマークフレームワークを構築する。
このフレームワークの目的は、積極的学習の組み合わせがEMにどのような効果をもたらすかについて、実践者のための具体的なガイドラインを可能にすることである。
また、F1スコアの観点から学習モデルの品質を約9%向上し、モデルの品質に影響を与えることなく、サンプル選択のレイテンシを最大10倍削減する新しい最適化も含んでいる。
論文 参考訳(メタデータ) (2020-03-29T19:08:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。