Equivalence of the effective non-hermitian Hamiltonians in the context
of open quantum systems and strongly-correlated electron systems
- URL: http://arxiv.org/abs/2001.09045v1
- Date: Fri, 24 Jan 2020 14:59:15 GMT
- Title: Equivalence of the effective non-hermitian Hamiltonians in the context
of open quantum systems and strongly-correlated electron systems
- Authors: Yoshihiro Michishita and Robert Peters
- Abstract summary: We show that non-hermitian phenomena can be observed in both open quantum systems and strongly correlated systems.
We propose a method to analyze non-hermitian properties without the necessity of postselection.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, it has become clear that non-hermitian phenomena can be observed
not only in open quantum systems experiencing gain and loss but also in
equilibrium single-particle properties of strongly correlated systems. However,
the circumstances and requirements for the emergence of non-hermitian phenomena
in each field are entirely different. While the implementation of postselection
is a significant obstacle to observe non-hermitian phenomena in open quantum
systems, it is unnecessary in strongly correlated systems.
Until now, a relation between both descriptions of non-hermitian phenomena
has not been revealed. In this paper, we close this gap and demonstrate that
the non-hermitian Hamiltonians emerging in both fields are identical, and we
clarify the conditions for the emergence of a non-hermitian Hamiltonian in
strongly correlated materials. Using this knowledge, we propose a method to
analyze non-hermitian properties without the necessity of postselection by
studying specific response functions of open quantum systems and strongly
correlated systems.
Related papers
- Quantitative non-classicality of mediated interactions [0.5033155053523042]
We show that the gain of quantum entanglement between the masses indicates non-classicality of the states of the whole tripartite system.
We derive inequalities whose violation indicates non-commutativity and non-decomposability.
We give applications of these techniques in two different fields: for detecting non-classicality of gravitational interaction and in bounding the Trotter error in quantum simulations.
arXiv Detail & Related papers (2023-03-22T09:58:26Z) - Topological extension including quantum jump [4.681851642601744]
We study the Su-Schrieffer-Heeger model with collective loss and gain from a topological perspective.
Our study provides a qualitative analysis of the impact of quantum jumping terms and reveals their unique role in quantum systems.
arXiv Detail & Related papers (2022-11-08T13:26:57Z) - Fate of entanglement in one-dimensional fermion liquid with coherent
particle loss [2.5081221761654757]
We study the dynamic properties of a one-dimensional fermionic system with adjacent-lattice particle loss.
Our findings provide valuable insights for near-term quantum devices and the quantum simulation of open systems.
arXiv Detail & Related papers (2021-12-27T07:24:33Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Basis-independent system-environment coherence is necessary to detect
magnetic field direction in an avian-inspired quantum magnetic sensor [77.34726150561087]
We consider an avian-inspired quantum magnetic sensor composed of two radicals with a third "scavenger" radical under the influence of a collisional environment.
We show that basis-independent coherence, in which the initial system-environment state is non-maximally mixed, is necessary for optimal performance.
arXiv Detail & Related papers (2020-11-30T17:19:17Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Decay and recurrence of non-Gaussian correlations in a quantum many-body
system [0.45823749779393547]
We observe a non-Gaussian initial state evolving under non-interacting dynamics in a quantum many-body system.
This non-equilibrium evolution is triggered by abruptly switching off the effective interaction between the observed collective degrees of freedom.
A description of this dynamics requires a novel mechanism for the emergence of Gaussian correlations.
arXiv Detail & Related papers (2020-03-03T21:49:03Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.