Heterogeneous Learning from Demonstration
- URL: http://arxiv.org/abs/2001.09569v2
- Date: Tue, 14 Apr 2020 19:29:24 GMT
- Title: Heterogeneous Learning from Demonstration
- Authors: Rohan Paleja, Matthew Gombolay
- Abstract summary: We propose a framework for learning from heterogeneous demonstration based upon Bayesian inference.
We evaluate a suite of approaches on a real-world dataset of gameplay from StarCraft II.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of human-robot systems able to leverage the strengths of both
humans and their robotic counterparts has been greatly sought after because of
the foreseen, broad-ranging impact across industry and research. We believe the
true potential of these systems cannot be reached unless the robot is able to
act with a high level of autonomy, reducing the burden of manual tasking or
teleoperation. To achieve this level of autonomy, robots must be able to work
fluidly with its human partners, inferring their needs without explicit
commands. This inference requires the robot to be able to detect and classify
the heterogeneity of its partners. We propose a framework for learning from
heterogeneous demonstration based upon Bayesian inference and evaluate a suite
of approaches on a real-world dataset of gameplay from StarCraft II. This
evaluation provides evidence that our Bayesian approach can outperform
conventional methods by up to 12.8$%$.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Generalized Robot Learning Framework [10.03174544844559]
We present a low-cost robot learning framework that is both easily reproducible and transferable to various robots and environments.
We demonstrate that deployable imitation learning can be successfully applied even to industrial-grade robots.
arXiv Detail & Related papers (2024-09-18T15:34:31Z) - Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition [48.65867987106428]
We introduce a novel system for joint learning between human operators and robots.
It enables human operators to share control of a robot end-effector with a learned assistive agent.
It reduces the need for human adaptation while ensuring the collected data is of sufficient quality for downstream tasks.
arXiv Detail & Related papers (2024-06-29T03:37:29Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
This paper presents a unified model-based reinforcement learning framework that bridges active exploration and uncertainty-aware deployment.
The two opposing tasks of exploration and deployment are optimized through state-of-the-art sampling-based MPC.
We conduct experiments on both autonomous vehicles and wheeled robots, showing promising results for both exploration and deployment.
arXiv Detail & Related papers (2023-05-20T17:20:12Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - Generalizable Human-Robot Collaborative Assembly Using Imitation
Learning and Force Control [17.270360447188196]
We present a system for human-robot collaborative assembly using learning from demonstration and pose estimation.
The proposed system is demonstrated using a physical 6 DoF manipulator in a collaborative human-robot assembly scenario.
arXiv Detail & Related papers (2022-12-02T20:35:55Z) - CoGrasp: 6-DoF Grasp Generation for Human-Robot Collaboration [0.0]
We propose a novel, deep neural network-based method called CoGrasp that generates human-aware robot grasps.
In real robot experiments, our method achieves about 88% success rate in producing stable grasps.
Our approach enables a safe, natural, and socially-aware human-robot objects' co-grasping experience.
arXiv Detail & Related papers (2022-10-06T19:23:25Z) - Aligning Robot Representations with Humans [5.482532589225552]
Key question is how to best transfer knowledge learned in one environment to another, where shifting constraints and human preferences render adaptation challenging.
We postulate that because humans will be the ultimate evaluator of system success in the world, they are best suited to communicating the aspects of the tasks that matter to the robot.
We highlight three areas where we can use this approach to build interactive systems and offer future directions of work to better create advanced collaborative robots.
arXiv Detail & Related papers (2022-05-15T15:51:05Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.