論文の概要: An Adaptive and Near Parameter-free Evolutionary Computation Approach
Towards True Automation in AutoML
- arxiv url: http://arxiv.org/abs/2001.10178v1
- Date: Tue, 28 Jan 2020 05:44:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-06 01:58:16.546897
- Title: An Adaptive and Near Parameter-free Evolutionary Computation Approach
Towards True Automation in AutoML
- Title(参考訳): AutoMLにおける真の自動化に向けた適応的・近接パラメータフリー進化計算手法
- Authors: Benjamin Patrick Evans, Bing Xue, Mengjie Zhang
- Abstract要約: 進化的計算手法の一般的な主張は、人間の介入なしに良い結果が得られるということである。
本稿では,パラメータフリーに近い遺伝的プログラミング手法を提案する。
我々はこれを(TPOTを拡張して)自動機械学習の領域に適用し、効果的に人間の入力から解放できるパイプラインを生成する。
- 参考スコア(独自算出の注目度): 4.4181317696554325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A common claim of evolutionary computation methods is that they can achieve
good results without the need for human intervention. However, one criticism of
this is that there are still hyperparameters which must be tuned in order to
achieve good performance. In this work, we propose a near "parameter-free"
genetic programming approach, which adapts the hyperparameter values throughout
evolution without ever needing to be specified manually. We apply this to the
area of automated machine learning (by extending TPOT), to produce pipelines
which can effectively be claimed to be free from human input, and show that the
results are competitive with existing state-of-the-art which use hand-selected
hyperparameter values. Pipelines begin with a randomly chosen estimator and
evolve to competitive pipelines automatically. This work moves towards a truly
automatic approach to AutoML.
- Abstract(参考訳): 進化的計算手法の一般的な主張は、人間の介入なしに良い結果が得られるということである。
しかし、これに対する批判の1つは、優れたパフォーマンスを達成するために調整しなければならないハイパーパラメータが存在することである。
本研究では,進化を通じてハイパーパラメータ値を手作業で指定することなく適応させる,ほぼ"パラメータフリー"な遺伝的プログラミング手法を提案する。
これを自動機械学習の領域に適用し(TPOTを拡張して)、効果的に人間の入力から解放されるパイプラインを生成し、手選択されたハイパーパラメータ値を使用する既存の最先端技術と競合することを示す。
パイプラインはランダムに選択された推定器から始まり、自動的に競合パイプラインへと進化する。
この作業は、AutoMLに対する真に自動的なアプローチに向かっています。
関連論文リスト
- Hyper-parameter Optimization for Federated Learning with Step-wise Adaptive Mechanism [0.48342038441006796]
Federated Learning(FL)は、クライアントの生のデータセットを共有するのではなく、ローカルモデルパラメータを利用して機密情報を保護する分散学習アプローチである。
本稿では、FL設定における2つの軽量ハイパー最適化(HPO)ツールであるRaytuneとOptunaの展開と統合について検討する。
この目的のために、ローカルとグローバルの両方のフィードバック機構が統合され、検索空間が制限され、HPOプロセスが高速化される。
論文 参考訳(メタデータ) (2024-11-19T05:49:00Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
人間からのフィードバックからの強化学習(RLHF)は、AIシステムと人間の価値を合わせるための一般的なアプローチである。
本稿では,分散ロバスト最適化(DRO)に基づく適応的優先損失を提案する。
提案手法は多用途であり,様々な選好最適化フレームワークに容易に適用可能である。
論文 参考訳(メタデータ) (2024-06-04T20:33:22Z) - ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections [59.839926875976225]
本稿では,HypErplane Reflectionsによる高効率微調整を行うETHER変換ファミリを提案する。
特に,既存のPEFT法と極めて少ないパラメータで一致または性能を向上するEtheRと緩和ETHER+を導入する。
論文 参考訳(メタデータ) (2024-05-30T17:26:02Z) - AutoFT: Learning an Objective for Robust Fine-Tuning [60.641186718253735]
ファンデーションモデルは、微調整によって下流タスクに適応できるリッチな表現をエンコードする。
手作り正則化技術を用いた頑健な微調整への最近のアプローチ
我々は、堅牢な微調整のためのデータ駆動型アプローチであるAutoFTを提案する。
論文 参考訳(メタデータ) (2024-01-18T18:58:49Z) - AutoRL Hyperparameter Landscapes [69.15927869840918]
強化学習(Reinforcement Learning, RL)は印象的な結果を生み出すことができるが、その使用はハイパーパラメータがパフォーマンスに与える影響によって制限されている。
我々は,これらのハイパーパラメータの景観を1つの時間だけではなく,複数の時間内に構築し,解析する手法を提案する。
これは、ハイパーパラメータがトレーニング中に動的に調整されるべきであるという理論を支持し、ランドスケープ解析によって得られるAutoRL問題に関するさらなる洞察の可能性を示している。
論文 参考訳(メタデータ) (2023-04-05T12:14:41Z) - Hyper-Parameter Auto-Tuning for Sparse Bayesian Learning [72.83293818245978]
我々は、疎ベイズ学習におけるハイパーパラメータチューニングのためのニューラルネットワーク(NN)ベースのオートチューニングを設計し、学習する。
コンバージェンス率とリカバリ性能の大幅な向上が達成できることを示す。
論文 参考訳(メタデータ) (2022-11-09T12:34:59Z) - Good Intentions: Adaptive Parameter Management via Intent Signaling [50.01012642343155]
そこで本研究では,既存の機械学習スタックに自然に統合された新たなインテントシグナリング機構を提案する。
次に、このメカニズムに基づいて、完全に適応的でゼロチューニングのパラメータマネージャであるAdaPMについて説明する。
私たちの評価では、AdaPMは、最先端のパラメータマネージャにマッチするか、あるいはパフォーマンスが良くなりました。
論文 参考訳(メタデータ) (2022-06-01T13:02:19Z) - Online AutoML: An adaptive AutoML framework for online learning [6.6389732792316005]
本研究では,データドリフトに継続的に適応しながら,オンライン学習のためのパイプライン設計を自動化することを目的とする。
このシステムは,オンライン学習者固有の適応能力とAutoMLの高速自動パイプライン(再最適化機能)を組み合わせる。
論文 参考訳(メタデータ) (2022-01-24T15:37:20Z) - HyP-ABC: A Novel Automated Hyper-Parameter Tuning Algorithm Using
Evolutionary Optimization [1.6114012813668934]
改良されたミツバチコロニーを用いたハイブリッドハイパーパラメータ最適化アルゴリズムHyP-ABCを提案する。
最先端技術と比較して、HyP-ABCは効率が良く、調整すべきパラメータが限られている。
論文 参考訳(メタデータ) (2021-09-11T16:45:39Z) - Hyperboost: Hyperparameter Optimization by Gradient Boosting surrogate
models [0.4079265319364249]
現在の最先端の方法は、ランダムフォレストまたはガウスプロセスを利用してサーロゲートモデルを構築しています。
勾配向上に基づく新しいサロゲートモデルを提案する。
実験により,新しい手法は,ある程度の分類問題に対して,最先端技術より優れていることを示す。
論文 参考訳(メタデータ) (2021-01-06T22:07:19Z) - Automatic Hyper-Parameter Optimization Based on Mapping Discovery from
Data to Hyper-Parameters [3.37314595161109]
本稿では,データから対応するハイパーパラメータへのマッピングに基づく,効率的な自動パラメータ最適化手法を提案する。
提案手法は最先端のアポラッチを著しく上回ることを示す。
論文 参考訳(メタデータ) (2020-03-03T19:26:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。