LIMITS: Lightweight Machine Learning for IoT Systems with Resource
Limitations
- URL: http://arxiv.org/abs/2001.10189v1
- Date: Tue, 28 Jan 2020 06:34:35 GMT
- Title: LIMITS: Lightweight Machine Learning for IoT Systems with Resource
Limitations
- Authors: Benjamin Sliwa and Nico Piatkowski and Christian Wietfeld
- Abstract summary: We present the novel open source framework LIghtweight Machine learning for IoT Systems (LIMITS)
LIMITS applies a platform-in-the-loop approach explicitly considering the actual compilation toolchain of the target IoT platform.
We apply and validate LIMITS in two case studies focusing on cellular data rate prediction and radio-based vehicle classification.
- Score: 8.647853543335662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exploiting big data knowledge on small devices will pave the way for building
truly cognitive Internet of Things (IoT) systems. Although machine learning has
led to great advancements for IoT-based data analytics, there remains a huge
methodological gap for the deployment phase of trained machine learning models.
For given resource-constrained platforms such as Microcontroller Units (MCUs),
model choice and parametrization are typically performed based on heuristics or
analytical models. However, these approaches are only able to provide rough
estimates of the required system resources as they do not consider the
interplay of hardware, compiler specific optimizations, and code dependencies.
In this paper, we present the novel open source framework LIghtweight Machine
learning for IoT Systems (LIMITS), which applies a platform-in-the-loop
approach explicitly considering the actual compilation toolchain of the target
IoT platform. LIMITS focuses on high level tasks such as experiment automation,
platform-specific code generation, and sweet spot determination. The solid
foundations of validated low-level model implementations are provided by the
coupled well-established data analysis framework Waikato Environment for
Knowledge Analysis (WEKA). We apply and validate LIMITS in two case studies
focusing on cellular data rate prediction and radio-based vehicle
classification, where we compare different learning models and real world IoT
platforms with memory constraints from 16 kB to 4 MB and demonstrate its
potential to catalyze the development of machine learning enabled IoT systems.
Related papers
- On-Device Language Models: A Comprehensive Review [26.759861320845467]
Review examines the challenges of deploying computationally expensive large language models on resource-constrained devices.
Paper investigates on-device language models, their efficient architectures, as well as state-of-the-art compression techniques.
Case studies of on-device language models from major mobile manufacturers demonstrate real-world applications and potential benefits.
arXiv Detail & Related papers (2024-08-26T03:33:36Z) - Harris Hawks Feature Selection in Distributed Machine Learning for
Secure IoT Environments [8.690178186919635]
Internet of Things (IoT) applications can collect and transfer sensitive data.
It is necessary to develop new methods to detect hacked IoT devices.
This paper proposes a Feature Selection (FS) model based on Harris Hawks Optimization (HHO) and Random Weight Network (RWN) to detect IoT botnet attacks.
arXiv Detail & Related papers (2023-02-20T09:38:12Z) - On-device Training: A First Overview on Existing Systems [6.551096686706628]
Efforts have been made to deploy some models on resource-constrained devices as well.
This work targets to summarize and analyze state-of-the-art systems research that allows such on-device model training capabilities.
arXiv Detail & Related papers (2022-12-01T19:22:29Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
This paper compares four state-of-the-art algorithms in two real applications: gesture recognition based on accelerometer data and image classification.
Our results confirm these systems' reliability and the feasibility of deploying them in tiny-memory MCUs.
arXiv Detail & Related papers (2022-09-01T17:05:20Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
We build a FedIoT platform that contains a synthesized dataset using N-BaIoT, FedDetect algorithm, and a system design for IoT devices.
In a network of realistic IoT devices (PI), we evaluate FedIoT platform and FedDetect algorithm in both model and system performance.
arXiv Detail & Related papers (2021-06-15T08:53:42Z) - Reliable Fleet Analytics for Edge IoT Solutions [0.0]
We propose a framework for facilitating machine learning at the edge for AIoT applications.
The contribution is an architecture that includes services, tools, and methods for delivering fleet analytics at scale.
We present a preliminary validation of the framework by performing experiments with IoT devices on a university campus's rooms.
arXiv Detail & Related papers (2021-01-12T11:28:43Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.