Treatment effect estimation with disentangled latent factors
- URL: http://arxiv.org/abs/2001.10652v3
- Date: Mon, 26 Apr 2021 13:42:03 GMT
- Title: Treatment effect estimation with disentangled latent factors
- Authors: Weijia Zhang, Lin Liu, Jiuyong Li
- Abstract summary: We show the importance of differentiating confounding factors from instrumental and risk factors for both average and conditional average treatment effect estimation.
We propose a variational inference approach to simultaneously infer latent factors from the observed variables, disentangle the factors into three disjoint sets corresponding to the instrumental, confounding, and risk factors, and use the disentangled factors for treatment effect estimation.
- Score: 24.803992990503186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Much research has been devoted to the problem of estimating treatment effects
from observational data; however, most methods assume that the observed
variables only contain confounders, i.e., variables that affect both the
treatment and the outcome. Unfortunately, this assumption is frequently
violated in real-world applications, since some variables only affect the
treatment but not the outcome, and vice versa. Moreover, in many cases only the
proxy variables of the underlying confounding factors can be observed. In this
work, we first show the importance of differentiating confounding factors from
instrumental and risk factors for both average and conditional average
treatment effect estimation, and then we propose a variational inference
approach to simultaneously infer latent factors from the observed variables,
disentangle the factors into three disjoint sets corresponding to the
instrumental, confounding, and risk factors, and use the disentangled factors
for treatment effect estimation. Experimental results demonstrate the
effectiveness of the proposed method on a wide range of synthetic, benchmark,
and real-world datasets.
Related papers
- Higher-Order Causal Message Passing for Experimentation with Complex Interference [6.092214762701847]
We introduce a new class of estimators based on causal message-passing, specifically designed for settings with pervasive, unknown interference.
Our estimator draws on information from the sample mean and variance of unit outcomes and treatments over time, enabling efficient use of observed data.
arXiv Detail & Related papers (2024-11-01T18:00:51Z) - A Bayesian Classification Trees Approach to Treatment Effect Variation with Noncompliance [0.5356944479760104]
Estimating varying treatment effects in randomized trials with noncompliance is inherently challenging.
Existing flexible machine learning methods are highly sensitive to the weak instruments problem.
We present a Bayesian Causal Forest model for binary response variables in scenarios with noncompliance.
arXiv Detail & Related papers (2024-08-14T18:33:55Z) - Disentangled Representation via Variational AutoEncoder for Continuous Treatment Effect Estimation [1.105274635981989]
We propose a novel Dose-Response curve estimator via Variational AutoEncoder (DRVAE)
We show that our model outperforms the current state-of-the-art methods.
arXiv Detail & Related papers (2024-06-04T13:41:07Z) - Causal Inference from Text: Unveiling Interactions between Variables [20.677407402398405]
Existing methods only account for confounding covariables that affect both treatment and outcome.
This bias arises from insufficient consideration of non-confounding covariables.
In this work, we aim to mitigate the bias by unveiling interactions between different variables.
arXiv Detail & Related papers (2023-11-09T11:29:44Z) - The Blessings of Multiple Treatments and Outcomes in Treatment Effect
Estimation [53.81860494566915]
Existing studies leveraged proxy variables or multiple treatments to adjust for confounding bias.
In many real-world scenarios, there is greater interest in studying the effects on multiple outcomes.
We show that parallel studies of multiple outcomes involved in this setting can assist each other in causal identification.
arXiv Detail & Related papers (2023-09-29T14:33:48Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
We introduce the Disentangled Counterfactual Recurrent Network (DCRN), a sequence-to-sequence architecture that estimates treatment outcomes over time.
With an architecture that is completely inspired by the causal structure of treatment influence over time, we advance forecast accuracy and disease understanding.
We demonstrate that DCRN outperforms current state-of-the-art methods in forecasting treatment responses, on both real and simulated data.
arXiv Detail & Related papers (2021-12-07T16:40:28Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Learning Decomposed Representation for Counterfactual Inference [53.36586760485262]
The fundamental problem in treatment effect estimation from observational data is confounder identification and balancing.
Most of the previous methods realized confounder balancing by treating all observed pre-treatment variables as confounders, ignoring further identifying confounders and non-confounders.
We propose a synergistic learning framework to 1) identify confounders by learning representations of both confounders and non-confounders, 2) balance confounder with sample re-weighting technique, and simultaneously 3) estimate the treatment effect in observational studies via counterfactual inference.
arXiv Detail & Related papers (2020-06-12T09:50:42Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.