Deep Disentangled Representation Network for Treatment Effect Estimation
- URL: http://arxiv.org/abs/2507.06650v1
- Date: Wed, 09 Jul 2025 08:29:37 GMT
- Title: Deep Disentangled Representation Network for Treatment Effect Estimation
- Authors: Hui Meng, Keping Yang, Xuyu Peng, Bo Zheng,
- Abstract summary: Estimating individual-level treatment effect from observational data is a fundamental problem in causal inference.<n>We propose a novel treatment effect estimation algorithm that incorporates a mixture of experts with multi-head attention.<n>We conduct extensive experiments on both public semi-synthetic and real-world production datasets.
- Score: 17.787544758117377
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating individual-level treatment effect from observational data is a fundamental problem in causal inference and has attracted increasing attention in the fields of education, healthcare, and public policy.In this work, we concentrate on the study of disentangled representation methods that have shown promising outcomes by decomposing observed covariates into instrumental, confounding, and adjustment factors. However, most of the previous work has primarily revolved around generative models or hard decomposition methods for covariates, which often struggle to guarantee the attainment of precisely disentangled factors. In order to effectively model different causal relationships, we propose a novel treatment effect estimation algorithm that incorporates a mixture of experts with multi-head attention and a linear orthogonal regularizer to softly decompose the pre-treatment variables, and simultaneously eliminates selection bias via importance sampling re-weighting techniques. We conduct extensive experiments on both public semi-synthetic and real-world production datasets. The experimental results clearly demonstrate that our algorithm outperforms the state-of-the-art methods focused on individual treatment effects.
Related papers
- Conformal Diffusion Models for Individual Treatment Effect Estimation and Inference [6.406853903837333]
Individual treatment effect offers the most granular measure of treatment effect on an individual level.
We propose a novel conformal diffusion model-based approach that addresses those intricate challenges.
arXiv Detail & Related papers (2024-08-02T21:35:08Z) - Data-Driven Estimation of Heterogeneous Treatment Effects [15.140272661540655]
Estimating how a treatment affects different individuals, known as heterogeneous treatment effect estimation, is an important problem in empirical sciences.
We provide a survey of state-of-the-art data-driven methods for heterogeneous treatment effect estimation using machine learning.
arXiv Detail & Related papers (2023-01-16T21:36:49Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - Interpretable Deep Causal Learning for Moderation Effects [0.0]
We address the problem of interpretability and targeted regularization in causal machine learning models.
We propose a novel deep counterfactual learning architecture for estimating individual treatment effects.
arXiv Detail & Related papers (2022-06-21T11:21:09Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Learning Decomposed Representation for Counterfactual Inference [53.36586760485262]
The fundamental problem in treatment effect estimation from observational data is confounder identification and balancing.
Most of the previous methods realized confounder balancing by treating all observed pre-treatment variables as confounders, ignoring further identifying confounders and non-confounders.
We propose a synergistic learning framework to 1) identify confounders by learning representations of both confounders and non-confounders, 2) balance confounder with sample re-weighting technique, and simultaneously 3) estimate the treatment effect in observational studies via counterfactual inference.
arXiv Detail & Related papers (2020-06-12T09:50:42Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.