論文の概要: NCVis: Noise Contrastive Approach for Scalable Visualization
- arxiv url: http://arxiv.org/abs/2001.11411v1
- Date: Thu, 30 Jan 2020 15:43:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-05 11:45:27.147144
- Title: NCVis: Noise Contrastive Approach for Scalable Visualization
- Title(参考訳): NCVis:スケーラブルな可視化のためのノイズコントラストアプローチ
- Authors: Aleksandr Artemenkov and Maxim Panov
- Abstract要約: NCVisはノイズコントラスト推定の音響統計的基礎の上に構築された高性能次元減少法である。
NCVisは,他の手法の表現品質を保ちながら,速度の観点から最先端技術よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 79.44177623781043
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern methods for data visualization via dimensionality reduction, such as
t-SNE, usually have performance issues that prohibit their application to large
amounts of high-dimensional data. In this work, we propose NCVis -- a
high-performance dimensionality reduction method built on a sound statistical
basis of noise contrastive estimation. We show that NCVis outperforms
state-of-the-art techniques in terms of speed while preserving the
representation quality of other methods. In particular, the proposed approach
successfully proceeds a large dataset of more than 1 million news headlines in
several minutes and presents the underlying structure in a human-readable way.
Moreover, it provides results consistent with classical methods like t-SNE on
more straightforward datasets like images of hand-written digits. We believe
that the broader usage of such software can significantly simplify the
large-scale data analysis and lower the entry barrier to this area.
- Abstract(参考訳): t-SNEのような次元還元によるデータ可視化の現代的な手法は、通常、大量の高次元データへの適用を禁じる性能上の問題がある。
本研究では,ノイズコントラッシブ推定の音響統計に基づく高性能次元低減手法であるNCVisを提案する。
NCVisは,他の手法の表現品質を保ちながら,速度の観点から最先端技術よりも優れていることを示す。
特に、提案したアプローチは、数分で100万以上のニュースの見出しの大規模なデータセットを前進させ、その基盤となる構造を可読性のある方法で提示する。
さらに、手書き桁の画像のようなより単純なデータセット上で、t-SNEのような古典的なメソッドと一致した結果を提供する。
このようなソフトウェアの利用は、大規模なデータ分析を大幅に単純化し、この分野への参入障壁を低くすることができると信じている。
関連論文リスト
- Inferring Neural Signed Distance Functions by Overfitting on Single Noisy Point Clouds through Finetuning Data-Driven based Priors [53.6277160912059]
本稿では,データ駆動型およびオーバーフィット型手法のプロースを推進し,より一般化し,高速な推論を行い,より高精度なニューラルネットワークSDFを学習する手法を提案する。
そこで本研究では,距離管理やクリーンポイントクラウド,あるいは点正規化を伴わずに,データ駆動型プリエントを微調整できる新しい統計的推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-25T16:48:44Z) - Noisy Data Visualization using Functional Data Analysis [14.255424476694946]
動的プロセスのための関数情報幾何 (FIG) と呼ばれる新しいデータ可視化手法を提案する。
提案手法は,可視化のために設計されたEIGの変種よりも優れていることを示す。
次に、脳波による睡眠活動の測定を可視化するために、我々の手法を使用します。
論文 参考訳(メタデータ) (2024-06-05T15:53:25Z) - Enhancing Representation Learning on High-Dimensional, Small-Size
Tabular Data: A Divide and Conquer Method with Ensembled VAEs [7.923088041693465]
特徴空間の部分集合の後方部分集合を学習するための軽量なVAEのアンサンブルを, 新規な分割コンカレントアプローチで結合後部分集合に集約する。
このアプローチは推論時に部分的な機能に対して堅牢であることを示し、ほとんどの機能が欠落していても、パフォーマンスの劣化がほとんどないことを示します。
論文 参考訳(メタデータ) (2023-06-27T17:55:31Z) - Laplacian-based Cluster-Contractive t-SNE for High Dimensional Data
Visualization [20.43471678277403]
本稿では t-SNE に基づく新しいグラフベース次元削減手法 LaptSNE を提案する。
具体的には、LaptSNEはグラフラプラシアンの固有値情報を利用して、低次元埋め込みにおけるポテンシャルクラスタを縮小する。
ラプラシアン合成目的による最適化を考える際には、より広い関心を持つであろう勾配を解析的に計算する方法を示す。
論文 参考訳(メタデータ) (2022-07-25T14:10:24Z) - Distributed Dynamic Safe Screening Algorithms for Sparse Regularization [73.85961005970222]
本稿では,分散動的安全スクリーニング(DDSS)手法を提案し,共有メモリアーキテクチャと分散メモリアーキテクチャにそれぞれ適用する。
提案手法は, 線形収束率を低次複雑度で達成し, 有限個の繰り返しにおいてほとんどすべての不活性な特徴をほぼ確実に除去できることを示す。
論文 参考訳(メタデータ) (2022-04-23T02:45:55Z) - Hierarchical Nearest Neighbor Graph Embedding for Efficient
Dimensionality Reduction [25.67957712837716]
元の空間における1-アレスト近傍グラフ上に構築された階層構造に基づく新しい手法を提案する。
この提案は、t-SNE と UMAP の最新バージョンと競合する最適化のないプロジェクションである。
そこで本論文では,提案手法の健全性について論じ,28~16Kの範囲で1Kから1100万のサンプルと寸法の異なるデータセットの多種多様なコレクション上で評価を行った。
論文 参考訳(メタデータ) (2022-03-24T11:41:16Z) - MANet: Improving Video Denoising with a Multi-Alignment Network [72.93429911044903]
本稿では,複数フローの提案とアテンションに基づく平均化を行うマルチアライメントネットワークを提案する。
大規模ビデオデータセットを用いた実験により,本手法は調音ベースラインモデルを0.2dBで改善することを示した。
論文 参考訳(メタデータ) (2022-02-20T00:52:07Z) - Scalable semi-supervised dimensionality reduction with GPU-accelerated
EmbedSOM [0.0]
BlosSOMは高次元データセットの対話型ユーザステアブル可視化のための高性能半教師付き次元減少ソフトウェアである。
現実的なデータセットにBlosSOMを適用することで、ユーザが指定したレイアウトを組み込んだ高品質な視覚化と、特定の機能に集中することが可能になる。
論文 参考訳(メタデータ) (2022-01-03T15:06:22Z) - Revisiting Point Cloud Simplification: A Learnable Feature Preserving
Approach [57.67932970472768]
MeshとPoint Cloudの単純化手法は、3Dモデルの複雑さを低減しつつ、視覚的品質と関連する健全な機能を維持することを目的としている。
そこで本研究では,正解点の標本化を学習し,高速点雲の簡易化手法を提案する。
提案手法は、入力空間から任意のユーザ定義の点数を選択し、視覚的知覚誤差を最小限に抑えるために、その位置を再配置するよう訓練されたグラフニューラルネットワークアーキテクチャに依存する。
論文 参考訳(メタデータ) (2021-09-30T10:23:55Z) - Visualising Deep Network's Time-Series Representations [93.73198973454944]
機械学習モデルの普及にもかかわらず、多くの場合、モデルの内部で起きていることに関する洞察のないブラックボックスとして運用される。
本稿では,多次元時系列データの可視化に着目し,この問題に対処する手法を提案する。
高周波在庫市場データセットの実験は、この方法が迅速かつ識別可能な可視化を提供することを示しています。
論文 参考訳(メタデータ) (2021-03-12T09:53:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。