Leveraging Action Relational Structures for Integrated Learning and Planning
- URL: http://arxiv.org/abs/2504.20318v1
- Date: Tue, 29 Apr 2025 00:10:14 GMT
- Title: Leveraging Action Relational Structures for Integrated Learning and Planning
- Authors: Ryan Xiao Wang, Felipe Trevizan,
- Abstract summary: We introduce partial-space search, a new search space for classical planning.<n>To guide partial-space search, we introduce action sets that evaluate sets of actions in a state.<n>Our new planner, LazyLifted, exploits our better integrated search and learnings and outperforms the state-of-the-art ML-based on IPC 2023 benchmarks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in planning have explored using learning methods to help planning. However, little attention has been given to adapting search algorithms to work better with learning systems. In this paper, we introduce partial-space search, a new search space for classical planning that leverages the relational structure of actions given by PDDL action schemas -- a structure overlooked by traditional planning approaches. Partial-space search provides a more granular view of the search space and allows earlier pruning of poor actions compared to state-space search. To guide partial-space search, we introduce action set heuristics that evaluate sets of actions in a state. We describe how to automatically convert existing heuristics into action set heuristics. We also train action set heuristics from scratch using large training datasets from partial-space search. Our new planner, LazyLifted, exploits our better integrated search and learning heuristics and outperforms the state-of-the-art ML-based heuristic on IPC 2023 learning track (LT) benchmarks. We also show the efficiency of LazyLifted on high-branching factor tasks and show that it surpasses LAMA in the combined IPC 2023 LT and high-branching factor benchmarks.
Related papers
- PLANRL: A Motion Planning and Imitation Learning Framework to Bootstrap Reinforcement Learning [13.564676246832544]
We introduce PLANRL, a framework that chooses when the robot should use classical motion planning and when it should learn a policy.
PLANRL switches between two modes of operation: reaching a waypoint using classical techniques when away from the objects and fine-grained manipulation control when about to interact with objects.
We evaluate our approach across multiple challenging simulation environments and real-world tasks, demonstrating superior performance in terms of adaptability, efficiency, and generalization compared to existing methods.
arXiv Detail & Related papers (2024-08-07T19:30:08Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
This work lays the foundations for improving planning capabilities of large language models (LLMs)
We construct a comprehensive benchmark suite encompassing both classical planning benchmarks and natural language scenarios.
We investigate the use of many-shot in-context learning to enhance LLM planning, exploring the relationship between increased context length and improved planning performance.
arXiv Detail & Related papers (2024-06-18T22:57:06Z) - Simultaneous Task Allocation and Planning for Multi-Robots under Hierarchical Temporal Logic Specifications [8.471147498059235]
We introduce a hierarchical structure to sc-LTL specifications with both syntax and semantics, proving it to be more expressive than flat counterparts.
We develop a search-based approach to synthesize plans for multi-robot systems, achieving simultaneous task allocation and planning.
arXiv Detail & Related papers (2024-01-08T16:35:13Z) - Searching a High-Performance Feature Extractor for Text Recognition
Network [92.12492627169108]
We design a domain-specific search space by exploring principles for having good feature extractors.
As the space is huge and complexly structured, no existing NAS algorithms can be applied.
We propose a two-stage algorithm to effectively search in the space.
arXiv Detail & Related papers (2022-09-27T03:49:04Z) - CrossBeam: Learning to Search in Bottom-Up Program Synthesis [51.37514793318815]
We propose training a neural model to learn a hands-on search policy for bottom-up synthesis.
Our approach, called CrossBeam, uses the neural model to choose how to combine previously-explored programs into new programs.
We observe that CrossBeam learns to search efficiently, exploring much smaller portions of the program space compared to the state-of-the-art.
arXiv Detail & Related papers (2022-03-20T04:41:05Z) - Provable Hierarchy-Based Meta-Reinforcement Learning [50.17896588738377]
We analyze HRL in the meta-RL setting, where learner learns latent hierarchical structure during meta-training for use in a downstream task.
We provide "diversity conditions" which, together with a tractable optimism-based algorithm, guarantee sample-efficient recovery of this natural hierarchy.
Our bounds incorporate common notions in HRL literature such as temporal and state/action abstractions, suggesting that our setting and analysis capture important features of HRL in practice.
arXiv Detail & Related papers (2021-10-18T17:56:02Z) - Learning Space Partitions for Path Planning [54.475949279050596]
PlaLaM outperforms existing path planning methods in 2D navigation tasks, especially in the presence of difficult-to-escape local optima.
These gains transfer to highly multimodal real-world tasks, where we outperform strong baselines in compiler phase ordering by up to 245% and in molecular design by up to 0.4 on properties on a 0-1 scale.
arXiv Detail & Related papers (2021-06-19T18:06:11Z) - Multi-layer local optima networks for the analysis of advanced local
search-based algorithms [0.6299766708197881]
Local Optima Network (LON) is a graph model that compresses the fitness landscape of a particular optimization problem based on a specific neighborhood operator and a local search algorithm.
This paper proposes the concept of multi-layer LONs as well as a methodology to explore these models aiming at extracting metrics for fitness landscape analysis.
arXiv Detail & Related papers (2020-04-29T03:20:01Z) - Flexible and Efficient Long-Range Planning Through Curious Exploration [13.260508939271764]
We show that the Curious Sample Planner can efficiently discover temporally-extended plans for solving a wide range of physically realistic 3D tasks.
In contrast, standard planning and learning methods often fail to solve these tasks at all or do so only with a huge and highly variable number of training samples.
arXiv Detail & Related papers (2020-04-22T21:47:29Z) - STRIPS Action Discovery [67.73368413278631]
Recent approaches have shown the success of classical planning at synthesizing action models even when all intermediate states are missing.
We propose a new algorithm to unsupervisedly synthesize STRIPS action models with a classical planner when action signatures are unknown.
arXiv Detail & Related papers (2020-01-30T17:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.