Measurement-induced dynamics of many-body systems at quantum criticality
- URL: http://arxiv.org/abs/2001.11501v1
- Date: Thu, 30 Jan 2020 18:51:01 GMT
- Title: Measurement-induced dynamics of many-body systems at quantum criticality
- Authors: Davide Rossini, Ettore Vicari
- Abstract summary: We study the interplay between unitary Hamiltonian driving and random local projective measurements.
The power law of the decay of quantum correlations turns out to be enhanced at the quantum transition.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a dynamic protocol for quantum many-body systems, which enables
to study the interplay between unitary Hamiltonian driving and random local
projective measurements. While the unitary dynamics tends to increase
entanglement, local measurements tend to disentangle, thus favoring
decoherence. Close to a quantum transition where the system develops critical
correlations with diverging length scales, the competition of the two drivings
is analyzed within a dynamic scaling framework, allowing us to identify a
regime (dynamic scaling limit) where the two mechanisms develop a nontrivial
interplay. We perform a numerical analysis of this protocol in a
measurement-driven Ising chain, which supports the scaling laws we put forward.
The local measurement process generally tends to suppress quantum correlations,
even in the dynamic scaling limit. The power law of the decay of the quantum
correlations turns out to be enhanced at the quantum transition.
Related papers
- Probing critical phenomena in open quantum systems using atom arrays [3.365378662696971]
At quantum critical points, correlations decay as a power law, with exponents determined by a set of universal scaling dimensions.
Here, we employ a Rydberg quantum simulator to adiabatically prepare critical ground states of both a one-dimensional ring and a two-dimensional square lattice.
By accounting for and tuning the openness of our quantum system, we are able to directly observe power-law correlations and extract the corresponding scaling dimensions.
arXiv Detail & Related papers (2024-02-23T15:21:38Z) - Distinguishing dynamical quantum criticality through local fidelity
distances [0.0]
We study the dynamical quantum phase transition in integrable and non-integrable Ising chains.
The non-analyticities in the quantum distance between two subsystem density matrices identify the critical time.
We propose a distance measure from the upper bound of the local quantum fidelity for certain quench protocols.
arXiv Detail & Related papers (2023-08-01T10:27:35Z) - Measurement-induced multipartite-entanglement regimes in collective spin
systems [0.0]
We study the competing effects of collective generalized measurements and interaction-induced scrambling in the dynamics of an ensemble of spin-1/2 particles.
We show that the interplay between collective unitary dynamics and measurements leads to three regimes of the average Quantum Fisher Information.
arXiv Detail & Related papers (2023-05-17T13:34:20Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Exact dynamics in dual-unitary quantum circuits with projective
measurements [0.0]
We introduce a class of models combining dual-unitary circuits with particular projective measurements.
We identify a symmetry preventing a measurement-induced phase transition and present exact results.
arXiv Detail & Related papers (2022-06-30T18:00:04Z) - Experimental Realization of a Measurement-Induced Entanglement Phase
Transition on a Superconducting Quantum Processor [0.0]
We report the realization of a measurement-induced entanglement transition on superconducting quantum processors with mid-circuit readout capability.
Our work paves the way for the use of mid-circuit measurement as an effective resource for quantum simulation on near-term quantum computers.
arXiv Detail & Related papers (2022-03-08T19:01:04Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.