論文の概要: Causal Imitative Model for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2112.03908v1
- Date: Tue, 7 Dec 2021 18:59:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-08 15:20:16.559525
- Title: Causal Imitative Model for Autonomous Driving
- Title(参考訳): 自律運転における因果Immitative Model
- Authors: Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar,
Alexandre Alahi
- Abstract要約: 慣性および衝突問題に対処するための因果Imitative Model (CIM)を提案する。
CIMは因果モデルを明確に発見し、ポリシーのトレーニングに利用します。
実験の結果,本手法は慣性および衝突速度において従来の手法よりも優れていたことがわかった。
- 参考スコア(独自算出の注目度): 85.78593682732836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imitation learning is a powerful approach for learning autonomous driving
policy by leveraging data from expert driver demonstrations. However, driving
policies trained via imitation learning that neglect the causal structure of
expert demonstrations yield two undesirable behaviors: inertia and collision.
In this paper, we propose Causal Imitative Model (CIM) to address inertia and
collision problems. CIM explicitly discovers the causal model and utilizes it
to train the policy. Specifically, CIM disentangles the input to a set of
latent variables, selects the causal variables, and determines the next
position by leveraging the selected variables. Our experiments show that our
method outperforms previous work in terms of inertia and collision rates.
Moreover, thanks to exploiting the causal structure, CIM shrinks the input
dimension to only two, hence, can adapt to new environments in a few-shot
setting. Code is available at https://github.com/vita-epfl/CIM.
- Abstract(参考訳): シミュレーション学習は、専門家のドライバーによるデモンストレーションのデータを活用することで、自動運転ポリシーを学ぶための強力なアプローチである。
しかし、専門家によるデモンストレーションの因果構造を無視した模倣学習を通じて訓練された運転方針は、2つの望ましくない行動(慣性と衝突)をもたらす。
本稿では,慣性および衝突問題に対処する因果Imitative Model (CIM)を提案する。
CIMは因果モデルを明確に発見し、ポリシーのトレーニングに利用します。
具体的には、cimは入力を潜在変数のセットに切り離し、因果変数を選択し、選択した変数を利用して次の位置を決定する。
実験の結果, 本手法は慣性および衝突率の点で従来の研究よりも優れていた。
さらに、因果構造を利用することにより、CIMは入力次元を2つに縮小するので、数ショット設定で新しい環境に適応することができる。
コードはhttps://github.com/vita-epfl/CIMで入手できる。
関連論文リスト
- Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models [60.87795376541144]
World Model(ワールドモデル)は、エージェントの次の状態を予測できるニューラルネットワークである。
エンド・ツー・エンドのトレーニングでは、人間のデモで観察された状態と整合してエラーから回復する方法を学ぶ。
クローズドループ試験における先行技術に有意な改善がみられた定性的,定量的な結果を示す。
論文 参考訳(メタデータ) (2024-09-25T06:48:25Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
適応型パーソナライズされた自動車追従フレームワークであるMetaFollowerを提案する。
まず,モデルに依存しないメタラーニング(MAML)を用いて,様々なCFイベントから共通運転知識を抽出する。
さらに、Long Short-Term Memory (LSTM) と Intelligent Driver Model (IDM) を組み合わせて、時間的不均一性を高い解釈性で反映する。
論文 参考訳(メタデータ) (2024-06-23T15:30:40Z) - Steering Without Side Effects: Improving Post-Deployment Control of Language Models [61.99293520621248]
言語モデル(LM)は、デプロイ後予期せず振る舞うことが示されている。
KL-then-steer (KTS) は, その利点を保ちながら, 操舵の副作用を低減する技術である。
本手法はLlama-2-chat-7Bモデルと比較して44%のジェイルブレイク攻撃を防ぐ。
論文 参考訳(メタデータ) (2024-06-21T01:37:39Z) - A Dual Approach to Imitation Learning from Observations with Offline Datasets [19.856363985916644]
報酬関数の設計が困難な環境では、エージェントを学習するためのタスク仕様の効果的な代替手段である。
専門家の行動を必要とせずに任意の準最適データを利用してポリシーを模倣するアルゴリズムであるDILOを導出する。
論文 参考訳(メタデータ) (2024-06-13T04:39:42Z) - On Learning the Tail Quantiles of Driving Behavior Distributions via
Quantile Regression and Flows [13.540998552232006]
本研究では,人間の運転行動確率分布の多様性とテール量子化を正確に把握する学習モデルの問題点を考察する。
この設定に2つのフレキシブルな量子学習フレームワークを適用し、強い分布仮定を避ける。
我々は1ステップの加速予測タスクと複数ステップのドライバーシミュレーションのロールアウトでアプローチを評価した。
論文 参考訳(メタデータ) (2023-05-22T15:09:04Z) - NeurIPS 2022 Competition: Driving SMARTS [60.948652154552136]
ドライビングSMARTSは、動的相互作用コンテキストにおける分散シフトに起因する問題に対処するために設計された定期的な競争である。
提案するコンペティションは,強化学習(RL)やオフライン学習など,方法論的に多様なソリューションをサポートする。
論文 参考訳(メタデータ) (2022-11-14T17:10:53Z) - Building Safer Autonomous Agents by Leveraging Risky Driving Behavior
Knowledge [1.52292571922932]
本研究は,モデルフリーな学習エージェントを作成するために,重交通や予期せぬランダムな行動を伴うリスクやすいシナリオの作成に重点を置いている。
ハイウェイ-envシミュレーションパッケージに新しいカスタムマルコフ決定プロセス(MDP)環境イテレーションを作成することにより、複数の自動運転シナリオを生成します。
リスクの高い運転シナリオを補足したモデル自由学習エージェントを訓練し,その性能をベースラインエージェントと比較する。
論文 参考訳(メタデータ) (2021-03-16T23:39:33Z) - Modeling Human Driving Behavior through Generative Adversarial Imitation
Learning [7.387855463533219]
本稿では、学習に基づくドライバモデリングにおけるGAIL(Generative Adversarial Imitation Learning)の使用について述べる。
ドライバモデリングは本質的にマルチエージェント問題であるため,PS-GAILと呼ばれるGAILのパラメータ共有拡張について述べる。
本稿では、報酬信号を変更し、エージェントにドメイン固有の知識を提供するReward Augmented Imitation Learning (RAIL)について述べる。
論文 参考訳(メタデータ) (2020-06-10T05:47:39Z) - Integrating Deep Reinforcement Learning with Model-based Path Planners
for Automated Driving [0.0]
本稿では、経路計画管を視覚ベースのDRLフレームワークに統合するためのハイブリッドアプローチを提案する。
要約すると、DRLエージェントは、パスプランナーのウェイポイントをできるだけ近くに追従するように訓練される。
実験の結果,提案手法は経路を計画し,ランダムに選択した起点-終点間を移動可能であることがわかった。
論文 参考訳(メタデータ) (2020-02-02T17:10:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。