論文の概要: Asking Questions the Human Way: Scalable Question-Answer Generation from
Text Corpus
- arxiv url: http://arxiv.org/abs/2002.00748v2
- Date: Thu, 5 Mar 2020 01:06:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-06 07:32:42.702232
- Title: Asking Questions the Human Way: Scalable Question-Answer Generation from
Text Corpus
- Title(参考訳): 人間のやり方を問う - テキストコーパスからのスケーラブルな質問応答生成
- Authors: Bang Liu, Haojie Wei, Di Niu, Haolan Chen, Yancheng He
- Abstract要約: 問合せ型質問生成(ACS-QG)を提案する。
ラベルなしテキストコーパスから高品質で多様な質問応答ペアを大規模に自動生成することを目的としている。
ウィキペディアで見つかった100万の文から、280万の質保証された質問応答ペアを生成することができる。
- 参考スコア(独自算出の注目度): 23.676748207014903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to ask questions is important in both human and machine
intelligence. Learning to ask questions helps knowledge acquisition, improves
question-answering and machine reading comprehension tasks, and helps a chatbot
to keep the conversation flowing with a human. Existing question generation
models are ineffective at generating a large amount of high-quality
question-answer pairs from unstructured text, since given an answer and an
input passage, question generation is inherently a one-to-many mapping. In this
paper, we propose Answer-Clue-Style-aware Question Generation (ACS-QG), which
aims at automatically generating high-quality and diverse question-answer pairs
from unlabeled text corpus at scale by imitating the way a human asks
questions. Our system consists of: i) an information extractor, which samples
from the text multiple types of assistive information to guide question
generation; ii) neural question generators, which generate diverse and
controllable questions, leveraging the extracted assistive information; and
iii) a neural quality controller, which removes low-quality generated data
based on text entailment. We compare our question generation models with
existing approaches and resort to voluntary human evaluation to assess the
quality of the generated question-answer pairs. The evaluation results suggest
that our system dramatically outperforms state-of-the-art neural question
generation models in terms of the generation quality, while being scalable in
the meantime. With models trained on a relatively smaller amount of data, we
can generate 2.8 million quality-assured question-answer pairs from a million
sentences found in Wikipedia.
- Abstract(参考訳): 質問する能力は、人間と機械の知性の両方において重要である。
質問を学ぶことは、知識獲得に役立ち、質問応答と機械による理解タスクを改善し、チャットボットが人間と会話を流すのを助ける。
既存の質問生成モデルは、非構造化テキストから大量の高品質な質問応答対を生成するのに有効ではない。
本稿では,人間が質問する方法を模倣して,ラベルのないテキストコーパスから高品質で多様な質問応答ペアを大規模に自動生成することを目的とした,質問応答型質問生成(ACS-QG)を提案する。
私たちのシステムは
一 質問生成を誘導するために、テキストから複数の種類の支援情報を採取する情報抽出装置
二 多様な制御可能な質問を生成し、抽出した補助情報を活用する神経質問発生装置
三 テキストの含意に基づく低品質な生成データを除去する神経質の制御装置。
質問生成モデルと既存のアプローチを比較し,自発的な人間評価を行い,質問・回答ペアの質を評価する。
評価結果から,本システムは生成品質の点で最先端のニューラル質問生成モデルより劇的に優れ,一方でスケーラビリティも高いことが示唆された。
比較的少ない量のデータで訓練されたモデルでは、Wikipediaにある100万の文から品質保証された質問対を280万個生成できる。
関連論文リスト
- Weakly Supervised Visual Question Answer Generation [2.7605547688813172]
視覚情報とキャプションから手続き的に質問応答対を合成的に生成する弱教師付き手法を提案する。
我々は,VQAデータセットの総合的な実験分析を行い,BLEUスコアのSOTA手法を著しく上回る結果を得た。
論文 参考訳(メタデータ) (2023-06-11T08:46:42Z) - Educational Question Generation of Children Storybooks via Question Type Distribution Learning and Event-Centric Summarization [67.1483219601714]
本稿では,まず,入力記事段落の質問型分布を学習する新しい質問生成手法を提案する。
学習用問合せペアで構成された銀のサンプルを用いて,事前学習したトランスフォーマーに基づくシーケンス・ツー・シーケンス・モデルを構築する。
本研究は,質問型分布学習とイベント中心の要約生成の分離の必要性を示唆するものである。
論文 参考訳(メタデータ) (2022-03-27T02:21:19Z) - MixQG: Neural Question Generation with Mixed Answer Types [54.23205265351248]
このギャップを埋めるために、ニューラル質問生成器MixQGを提案する。
yes/no, multiple-choice, extractive, abstractive answerなど,9つの質問応答データセットと多様な回答タイプを組み合わせる。
私たちのモデルは、目に見えない領域と見えない領域の両方で、既存の作業より優れています。
論文 参考訳(メタデータ) (2021-10-15T16:03:40Z) - Controllable Open-ended Question Generation with A New Question Type
Ontology [6.017006996402699]
複数の文で通常答えられるオープンエンドな質問を生成するという,探索の少ない課題について検討する。
まず、広く使われている質問語よりも、質問のニュアンスの性質をよりよく区別する新しい質問型オントロジーを定義する。
次に,意味グラフ表現によって拡張された質問型認識型質問生成フレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-01T00:02:03Z) - Enhancing Question Generation with Commonsense Knowledge [33.289599417096206]
質問生成プロセスにコモンセンス知識を導入するためのマルチタスク学習フレームワークを提案する。
SQuAD実験の結果,提案手法は自動評価と人的評価の両方でQG性能を著しく向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-06-19T08:58:13Z) - Understanding Unnatural Questions Improves Reasoning over Text [54.235828149899625]
生テキストに対する複雑な質問応答(CQA)は難しい課題である。
効果的なCQAモデルを学ぶには、大量の人間が注釈付けしたデータが必要である。
我々は、自然の人間生成の質問を非自然の機械生成の質問に投影することで、高品質なプログラマ(パーザ)を学ぶという課題に対処する。
論文 参考訳(メタデータ) (2020-10-19T10:22:16Z) - Decoding Methods for Neural Narrative Generation [74.37264021226308]
ナラティブ生成(英: Narrative generation)とは、モデルがプロンプトを与えられたストーリーを生成するオープンエンドのNLPタスクである。
ニューラル・ナラティブ・ジェネレーションに対するニューラル・レスポンス・ジェネレーションのためのデコード手法の適用と評価を行った。
論文 参考訳(メタデータ) (2020-10-14T19:32:56Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
InQUISITIVEは、文書を読みながら19K質問を抽出するデータセットである。
我々は,読者が情報を求めるための実践的な戦略に携わることを示す。
我々は, GPT-2に基づく質問生成モデルを評価し, 妥当な質問を生成することができることを示す。
論文 参考訳(メタデータ) (2020-10-04T19:03:39Z) - Reinforced Multi-task Approach for Multi-hop Question Generation [47.15108724294234]
我々は,その文脈における支援事実に基づいて,関連する質問を生成することを目的としたマルチホップ質問生成を取り上げている。
我々は,質問生成を導くために,回答認識支援事実予測の補助タスクを備えたマルチタスク学習を採用する。
マルチホップ質問応答データセットHotPotQAの実験を通して,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-04-05T10:16:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。