論文の概要: MixQG: Neural Question Generation with Mixed Answer Types
- arxiv url: http://arxiv.org/abs/2110.08175v1
- Date: Fri, 15 Oct 2021 16:03:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-18 13:42:42.147463
- Title: MixQG: Neural Question Generation with Mixed Answer Types
- Title(参考訳): MixQG: 混合回答型によるニューラル質問生成
- Authors: Lidiya Murakhovs'ka, Chien-Sheng Wu, Tong Niu, Wenhao Liu, Caiming
Xiong
- Abstract要約: このギャップを埋めるために、ニューラル質問生成器MixQGを提案する。
yes/no, multiple-choice, extractive, abstractive answerなど,9つの質問応答データセットと多様な回答タイプを組み合わせる。
私たちのモデルは、目に見えない領域と見えない領域の両方で、既存の作業より優れています。
- 参考スコア(独自算出の注目度): 54.23205265351248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Asking good questions is an essential ability for both human and machine
intelligence. However, existing neural question generation approaches mainly
focus on the short factoid type of answers. In this paper, we propose a neural
question generator, MixQG, to bridge this gap. We combine 9 question answering
datasets with diverse answer types, including yes/no, multiple-choice,
extractive, and abstractive answers, to train a single generative model. We
show with empirical results that our model outperforms existing work in both
seen and unseen domains and can generate questions with different cognitive
levels when conditioned on different answer types. Our code is released and
well-integrated with the Huggingface library to facilitate various downstream
applications.
- Abstract(参考訳): 良い質問をすることは、人間と機械の知性の両方にとって必須の能力である。
しかし、既存のニューラルな質問生成アプローチは、主に短いファクトイドの答えに焦点をあてている。
本稿では,このギャップを埋めるために,神経質問生成器mixqgを提案する。
9つの質問応答データセットとyes/no、multiple-choice、extractive、abstractive answerを含む多様な回答タイプを組み合わせることで、単一の生成モデルをトレーニングします。
実験結果から,本モデルは既往の課題を未発見領域と未発見領域の両方で上回っており,異なる回答タイプで条件づけされた場合,認知レベルの異なる質問を生成できることを示した。
我々のコードはリリースされ、hughingfaceライブラリとよく統合され、様々な下流アプリケーションを容易にします。
関連論文リスト
- Diversity Enhanced Narrative Question Generation for Storybooks [4.043005183192124]
マルチクエスト生成モデル(mQG)を導入し,複数の,多様な,回答可能な質問を生成する。
生成した質問の応答性を検証するために,SQuAD2.0の微調整された質問応答モデルを用いる。
mQGは、強力なベースラインの中で、様々な評価指標で有望な結果を示している。
論文 参考訳(メタデータ) (2023-10-25T08:10:04Z) - Improving Question Generation with Multi-level Content Planning [70.37285816596527]
本稿では、与えられたコンテキストと回答から質問を生成する問題に対処し、特に拡張されたコンテキストをまたいだマルチホップ推論を必要とする質問に焦点をあてる。
具体的には、キーフレーズを同時に選択して完全な回答を生成するFA-modelと、生成した全回答を付加的な入力として取り込んだQ-modelの2つのコンポーネントを含む。
論文 参考訳(メタデータ) (2023-10-20T13:57:01Z) - Answering Ambiguous Questions via Iterative Prompting [84.3426020642704]
オープンドメインの質問応答では、質問のあいまいさのため、複数の妥当な回答が存在する可能性がある。
ひとつのアプローチは、すべての有効な回答を直接予測することですが、これは、妥当性と多様性のバランスに苦労する可能性があります。
本稿では,あいまいな疑問に答える既存手法の欠陥に対処するため,AmbigPromptを提案する。
論文 参考訳(メタデータ) (2023-07-08T04:32:17Z) - Weakly Supervised Visual Question Answer Generation [2.7605547688813172]
視覚情報とキャプションから手続き的に質問応答対を合成的に生成する弱教師付き手法を提案する。
我々は,VQAデータセットの総合的な実験分析を行い,BLEUスコアのSOTA手法を著しく上回る結果を得た。
論文 参考訳(メタデータ) (2023-06-11T08:46:42Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
質問と回答の生成(QAG)は、コンテキストが与えられた質問と回答のペアのセットを生成することで構成される。
本稿では,シーケンス・ツー・シーケンス言語モデル(LM)を微調整する3つの異なるQAG手法を用いて,ベースラインを確立する。
実験により、学習時間と推論時間の両方で計算的に軽量なエンドツーエンドQAGモデルが一般に堅牢であり、他のより複雑なアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-26T14:59:53Z) - Learn to Explain: Multimodal Reasoning via Thought Chains for Science
Question Answering [124.16250115608604]
本稿では,SQA(Science Question Answering)について紹介する。SQA(Science Question Answering)は,21万のマルチモーダルな複数選択質問と多様な科学トピックと,それに対応する講義や説明による回答の注釈からなる新しいベンチマークである。
また,SQAでは,数ショットのGPT-3では1.20%,微調整のUnifiedQAでは3.99%の改善が見られた。
我々の分析は、人間に似た言語モデルは、より少ないデータから学習し、わずか40%のデータで同じパフォーマンスを達成するのに、説明の恩恵を受けることを示している。
論文 参考訳(メタデータ) (2022-09-20T07:04:24Z) - Reinforced Multi-task Approach for Multi-hop Question Generation [47.15108724294234]
我々は,その文脈における支援事実に基づいて,関連する質問を生成することを目的としたマルチホップ質問生成を取り上げている。
我々は,質問生成を導くために,回答認識支援事実予測の補助タスクを備えたマルチタスク学習を採用する。
マルチホップ質問応答データセットHotPotQAの実験を通して,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-04-05T10:16:59Z) - Asking Questions the Human Way: Scalable Question-Answer Generation from
Text Corpus [23.676748207014903]
問合せ型質問生成(ACS-QG)を提案する。
ラベルなしテキストコーパスから高品質で多様な質問応答ペアを大規模に自動生成することを目的としている。
ウィキペディアで見つかった100万の文から、280万の質保証された質問応答ペアを生成することができる。
論文 参考訳(メタデータ) (2020-01-27T05:27:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。