A hybrid model based on deep LSTM for predicting high-dimensional
chaotic systems
- URL: http://arxiv.org/abs/2002.00799v1
- Date: Tue, 21 Jan 2020 06:47:44 GMT
- Title: A hybrid model based on deep LSTM for predicting high-dimensional
chaotic systems
- Authors: Youming Lei, Jian Hu and Jianpeng Ding
- Abstract summary: We propose a hybrid method combining the deep long short-term memory (LSTM) model with the inexact empirical model of dynamical systems.
The proposed method can effectively avoid the rapid divergence of the multi-layer LSTM model when reconstructing chaotic attractors.
- Score: 2.094821665776961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a hybrid method combining the deep long short-term memory (LSTM)
model with the inexact empirical model of dynamical systems to predict
high-dimensional chaotic systems. The deep hierarchy is encoded into the LSTM
by superimposing multiple recurrent neural network layers and the hybrid model
is trained with the Adam optimization algorithm. The statistical results of the
Mackey-Glass system and the Kuramoto-Sivashinsky system are obtained under the
criteria of root mean square error (RMSE) and anomaly correlation coefficient
(ACC) using the singe-layer LSTM, the multi-layer LSTM, and the corresponding
hybrid method, respectively. The numerical results show that the proposed
method can effectively avoid the rapid divergence of the multi-layer LSTM model
when reconstructing chaotic attractors, and demonstrate the feasibility of the
combination of deep learning based on the gradient descent method and the
empirical model.
Related papers
- Adaptive Fuzzy C-Means with Graph Embedding [84.47075244116782]
Fuzzy clustering algorithms can be roughly categorized into two main groups: Fuzzy C-Means (FCM) based methods and mixture model based methods.
We propose a novel FCM based clustering model that is capable of automatically learning an appropriate membership degree hyper- parameter value.
arXiv Detail & Related papers (2024-05-22T08:15:50Z) - Generalization capabilities and robustness of hybrid machine learning models grounded in flow physics compared to purely deep learning models [2.8686437689115363]
This study investigates the generalization capabilities and robustness of purely deep learning (DL) models and hybrid models based on physical principles in fluid dynamics applications.
Three autoregressive models were compared: a convolutional autoencoder combined with a convolutional LSTM, a variational autoencoder (VAE) combined with a ConvLSTM and a hybrid model that combines proper decomposition (POD) with a LSTM (POD-DL)
While the VAE and ConvLSTM models accurately predicted laminar flow, the hybrid POD-DL model outperformed the others across both laminar and turbulent flow regimes.
arXiv Detail & Related papers (2024-04-27T12:43:02Z) - Hybrid hidden Markov LSTM for short-term traffic flow prediction [0.0]
We propose a hybrid hidden Markov-LSTM model that is capable of learning complementary features in traffic data.
Results indicate significant performance gains in using hybrid architecture compared to conventional methods.
arXiv Detail & Related papers (2023-07-11T00:56:44Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
An active reconfigurable intelligent surface (RIS)-aided multi-user downlink communication system is investigated.
Non-orthogonal multiple access (NOMA) is employed to improve spectral efficiency, and the active RIS is powered by energy harvesting (EH)
An advanced LSTM based algorithm is developed to predict users' dynamic communication state.
A DDPG based algorithm is proposed to joint control the amplification matrix and phase shift matrix RIS.
arXiv Detail & Related papers (2023-04-11T13:16:28Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - Realization of the Trajectory Propagation in the MM-SQC Dynamics by
Using Machine Learning [4.629634111796585]
We apply the supervised machine learning (ML) approach to realize the trajectory-based nonadiabatic dynamics.
The proposed idea is proven to be reliable and accurate in the simulations of the dynamics of several site-exciton electron-phonon coupling models.
arXiv Detail & Related papers (2022-07-11T01:23:36Z) - Accurate Discharge Coefficient Prediction of Streamlined Weirs by
Coupling Linear Regression and Deep Convolutional Gated Recurrent Unit [2.4475596711637433]
The present study proposes data-driven modeling techniques, as an alternative to CFD simulation, to predict the discharge coefficient based on an experimental dataset.
It is found that the proposed three layer hierarchical DL algorithm consists of a convolutional layer coupled with two subsequent GRU levels, which is also hybridized with the LR method, leads to lower error metrics.
arXiv Detail & Related papers (2022-04-12T01:59:36Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Compressing LSTM Networks by Matrix Product Operators [7.395226141345625]
Long Short Term Memory(LSTM) models are the building blocks of many state-of-the-art natural language processing(NLP) and speech enhancement(SE) algorithms.
Here we introduce the MPO decomposition, which describes the local correlation of quantum states in quantum many-body physics.
We propose a matrix product operator(MPO) based neural network architecture to replace the LSTM model.
arXiv Detail & Related papers (2020-12-22T11:50:06Z) - Estimation of Switched Markov Polynomial NARX models [75.91002178647165]
We identify a class of models for hybrid dynamical systems characterized by nonlinear autoregressive (NARX) components.
The proposed approach is demonstrated on a SMNARX problem composed by three nonlinear sub-models with specific regressors.
arXiv Detail & Related papers (2020-09-29T15:00:47Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
We show that gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms.
We also demonstrate this transition empirically for more complex matrix factorization models and multilayer non-linear networks.
arXiv Detail & Related papers (2020-02-20T15:43:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.