Robust Generative Restricted Kernel Machines using Weighted Conjugate
Feature Duality
- URL: http://arxiv.org/abs/2002.01180v3
- Date: Tue, 23 Jun 2020 14:35:30 GMT
- Title: Robust Generative Restricted Kernel Machines using Weighted Conjugate
Feature Duality
- Authors: Arun Pandey, Joachim Schreurs, Johan A. K. Suykens
- Abstract summary: We introduce weighted conjugate feature duality in the framework of Restricted Kernel Machines (RKMs)
The RKM formulation allows for an easy integration of methods from classical robust statistics.
Experiments show that the weighted RKM is capable of generating clean images when contamination is present in the training data.
- Score: 11.68800227521015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interest in generative models has grown tremendously in the past decade.
However, their training performance can be adversely affected by contamination,
where outliers are encoded in the representation of the model. This results in
the generation of noisy data. In this paper, we introduce weighted conjugate
feature duality in the framework of Restricted Kernel Machines (RKMs). The RKM
formulation allows for an easy integration of methods from classical robust
statistics. This formulation is used to fine-tune the latent space of
generative RKMs using a weighting function based on the Minimum Covariance
Determinant, which is a highly robust estimator of multivariate location and
scatter. Experiments show that the weighted RKM is capable of generating clean
images when contamination is present in the training data. We further show that
the robust method also preserves uncorrelated feature learning through
qualitative and quantitative experiments on standard datasets.
Related papers
- The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Accurate generation of stochastic dynamics based on multi-model
Generative Adversarial Networks [0.0]
Generative Adversarial Networks (GANs) have shown immense potential in fields such as text and image generation.
Here we quantitatively test this approach by applying it to a prototypical process on a lattice.
Importantly, the discreteness of the model is retained despite the noise.
arXiv Detail & Related papers (2023-05-25T10:41:02Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
We propose a compound batch normalization method based on a Gaussian mixture.
It can model the feature space more comprehensively and reduce the dominance of head classes.
The proposed method outperforms existing methods on long-tailed image classification.
arXiv Detail & Related papers (2022-12-02T07:31:39Z) - Learning Multivariate CDFs and Copulas using Tensor Factorization [39.24470798045442]
Learning the multivariate distribution of data is a core challenge in statistics and machine learning.
In this work, we aim to learn multivariate cumulative distribution functions (CDFs), as they can handle mixed random variables.
We show that any grid sampled version of a joint CDF of mixed random variables admits a universal representation as a naive Bayes model.
We demonstrate the superior performance of the proposed model in several synthetic and real datasets and applications including regression, sampling and data imputation.
arXiv Detail & Related papers (2022-10-13T16:18:46Z) - Learning a Restricted Boltzmann Machine using biased Monte Carlo
sampling [0.6554326244334867]
We show that sampling the equilibrium distribution via Markov Chain Monte Carlo can be dramatically accelerated using biased sampling techniques.
We also show that this sampling technique can be exploited to improve the computation of the log-likelihood gradient during the training too.
arXiv Detail & Related papers (2022-06-02T21:29:01Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Information Theoretic Structured Generative Modeling [13.117829542251188]
A novel generative model framework called the structured generative model (SGM) is proposed that makes straightforward optimization possible.
The implementation employs a single neural network driven by an orthonormal input to a single white noise source adapted to learn an infinite Gaussian mixture model.
Preliminary results show that SGM significantly improves MINE estimation in terms of data efficiency and variance, conventional and variational Gaussian mixture models, as well as for training adversarial networks.
arXiv Detail & Related papers (2021-10-12T07:44:18Z) - Continual Learning with Fully Probabilistic Models [70.3497683558609]
We present an approach for continual learning based on fully probabilistic (or generative) models of machine learning.
We propose a pseudo-rehearsal approach using a Gaussian Mixture Model (GMM) instance for both generator and classifier functionalities.
We show that GMR achieves state-of-the-art performance on common class-incremental learning problems at very competitive time and memory complexity.
arXiv Detail & Related papers (2021-04-19T12:26:26Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.