QKD Based on Time-Entangled Photons and its Key-Rate Promise
- URL: http://arxiv.org/abs/2303.01973v1
- Date: Fri, 3 Mar 2023 14:40:40 GMT
- Title: QKD Based on Time-Entangled Photons and its Key-Rate Promise
- Authors: Lara Dolecek and Emina Soljanin
- Abstract summary: Time-entanglement-based QKD promises to increase the secret key rate and distribution compared to other QKD implementations.
We overview state-of-the-art from the information and coding theory perspective.
- Score: 24.07745562101555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For secure practical systems, quantum key distribution (QKD) must provide
high key rates over long distances. Time-entanglement-based QKD promises to
increase the secret key rate and distribution distances compared to other QKD
implementations. This article describes the major steps in QKD protocols,
focusing on the nascent QKD technology based on high-dimensional time-bin
entangled photons. We overview state-of-the-art from the information and coding
theory perspective. In particular, we discuss the key rate loss due to
single-photon detector imperfections. We hope the open questions posed and
discussed in this paper will inspire information and coding theorists to
contribute to and impact fledgling quantum applications and influence future
quantum communication systems.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Metropolitan quantum key distribution using a GaN-based room-temperature telecommunication single-photon source [54.32714639668751]
Single-photon sources (SPS) hold the potential to enhance the performance of quantum key distribution (QKD)
We have successfully demonstrated QKD using a room-temperature SPS at telecommunication wavelength.
arXiv Detail & Related papers (2024-09-27T07:35:51Z) - On High-Dimensional Twin-Field Quantum Key Distribution [2.5725014718006647]
Twin-Field Quantum Key Distribution (QKD) is a QKD protocol that uses single-photon interference to perform QKD over long distances.
We define the essence of Twin-Field QKD and explore its generalization to higher dimensions.
arXiv Detail & Related papers (2024-05-07T11:20:37Z) - Precise Phase Error Rate Analysis for Quantum Key Distribution with
Phase Postselection [14.638851224694692]
Quantum key distribution (QKD) stands as a pioneering method for establishing information-theoretically secure communication channels.
Here we make a precise phase error rate analysis for QKD protocols with phase postselection.
We further apply our analysis in sending-or-not-sending twin-field quantum key distribution (SNS-TFQKD) and mode-pairing quantum key distribution (MP-QKD)
arXiv Detail & Related papers (2023-12-11T13:49:40Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Boosting quantum key distribution via the end-to-end loss control [0.0]
We show a remarkable improvement in the quantum key distribution (QKD) performance using end-to-end line tomography.
Our approach is based on the real-time detection of interventions in the transmission channel.
Our findings provide everlastingly secure efficient quantum cryptography deployment.
arXiv Detail & Related papers (2023-08-07T17:32:14Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - An Efficient Routing Protocol for Quantum Key Distribution Networks [9.203625000707856]
Quantum key distribution (QKD) can provide point-to-point information-theoretic secure key services for two connected users.
QOLSR considerably improves quantum key utilization in QKD networks through link-state awareness and path optimization.
arXiv Detail & Related papers (2022-04-29T07:37:45Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Recent advances on quantum key distribution overcoming the linear secret
key capacity bound [0.0]
A crucial goal for quantum key distribution (QKD) is to transmit unconditionally secure keys over long distances.
In 2018, the seminal twin-field (TF) QKD protocol was proposed to provide a remarkable solution to overcoming the linear secret key capacity bound.
This article presents an up-to-date survey on recent developments in this area.
arXiv Detail & Related papers (2020-11-26T02:11:53Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.