Gaussian Processes for Probabilistic Estimates of Earthquake Ground Shaking: A 1-D Proof-of-Concept
- URL: http://arxiv.org/abs/2412.03299v1
- Date: Wed, 04 Dec 2024 13:16:57 GMT
- Title: Gaussian Processes for Probabilistic Estimates of Earthquake Ground Shaking: A 1-D Proof-of-Concept
- Authors: Sam A. Scivier, Tarje Nissen-Meyer, Paula Koelemeijer, Atılım Güneş Baydin,
- Abstract summary: Estimates of seismic wave speeds in the Earth are key input parameters to earthquake simulations for ground motion prediction.
We present a proof-of-concept for incorporating uncertainties arising from inconsistencies between existing seismic velocity models.
- Score: 0.0
- License:
- Abstract: Estimates of seismic wave speeds in the Earth (seismic velocity models) are key input parameters to earthquake simulations for ground motion prediction. Owing to the non-uniqueness of the seismic inverse problem, typically many velocity models exist for any given region. The arbitrary choice of which velocity model to use in earthquake simulations impacts ground motion predictions. However, current hazard analysis methods do not account for this source of uncertainty. We present a proof-of-concept ground motion prediction workflow for incorporating uncertainties arising from inconsistencies between existing seismic velocity models. Our analysis is based on the probabilistic fusion of overlapping seismic velocity models using scalable Gaussian process (GP) regression. Specifically, we fit a GP to two synthetic 1-D velocity profiles simultaneously, and show that the predictive uncertainty accounts for the differences between the models. We subsequently draw velocity model samples from the predictive distribution and estimate peak ground displacement using acoustic wave propagation through the velocity models. The resulting distribution of possible ground motion amplitudes is much wider than would be predicted by simulating shaking using only the two input velocity models. This proof-of-concept illustrates the importance of probabilistic methods for physics-based seismic hazard analysis.
Related papers
- High Resolution Seismic Waveform Generation using Denoising Diffusion [3.5046784866523932]
This study introduces a novel, efficient, and scalable generative model for high-frequency seismic waveform generation.
A spectrogram representation of seismic waveform data is reduced to a lower-dimensional submanifold via an autoencoder.
A state-of-the-art diffusion model is trained to generate this latent representation, conditioned on key input parameters.
arXiv Detail & Related papers (2024-10-25T07:01:48Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
This paper proposes an interpretable generative model for motion prediction with robust generalizability to out-of-distribution cases.
For interpretability, the model achieves the target-driven motion prediction by estimating the spatial distribution of long-term destinations.
Experiments on motion prediction datasets validate that the fitted model can be interpretable and generalizable.
arXiv Detail & Related papers (2024-03-10T04:16:04Z) - DiffCast: A Unified Framework via Residual Diffusion for Precipitation Nowcasting [20.657502066923023]
Precipitation nowcasting is an important task to predict the radar echoes sequences based on current observations, which can serve both meteorological science and smart city applications.
Previous studies address the problem either from the perspectives of deterministic modeling or probabilistic modeling.
We propose to decompose and model the chaotic evolutionary precipitation systems from the perspective of global deterministic motion and local variations with residual mechanism.
arXiv Detail & Related papers (2023-12-11T11:26:32Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
Entangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications.
We propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
arXiv Detail & Related papers (2023-01-18T11:29:49Z) - PRISM: Probabilistic Real-Time Inference in Spatial World Models [52.878769723544615]
PRISM is a method for real-time filtering in a probabilistic generative model of agent motion and visual perception.
The proposed solution runs at 10Hz real-time and is similarly accurate to state-of-the-art SLAM in small to medium-sized indoor environments.
arXiv Detail & Related papers (2022-12-06T13:59:06Z) - Quantifying Model Predictive Uncertainty with Perturbation Theory [21.591460685054546]
We propose a framework for predictive uncertainty quantification of a neural network.
We use perturbation theory from quantum physics to formulate a moment decomposition problem.
Our approach provides fast model predictive uncertainty estimates with much greater precision and calibration.
arXiv Detail & Related papers (2021-09-22T17:55:09Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - Short- and long-term prediction of a chaotic flow: A physics-constrained
reservoir computing approach [5.37133760455631]
We propose a physics-constrained machine learning method-based on reservoir computing- to time-accurately predict extreme events and long-term velocity statistics in a model of turbulent shear flow.
We show that the combination of the two approaches is able to accurately reproduce the velocity statistics and to predict the occurrence and amplitude of extreme events in a model of self-sustaining process in turbulence.
arXiv Detail & Related papers (2021-02-15T12:29:09Z) - Semiparametric Bayesian Forecasting of Spatial Earthquake Occurrences [77.68028443709338]
We propose a fully Bayesian formulation of the Epidemic Type Aftershock Sequence (ETAS) model.
The occurrence of the mainshock earthquakes in a geographical region is assumed to follow an inhomogeneous spatial point process.
arXiv Detail & Related papers (2020-02-05T10:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.