論文の概要: Autonomous Navigation in Unknown Environments using Sparse Kernel-based
Occupancy Mapping
- arxiv url: http://arxiv.org/abs/2002.01921v1
- Date: Wed, 5 Feb 2020 18:54:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 22:05:25.465327
- Title: Autonomous Navigation in Unknown Environments using Sparse Kernel-based
Occupancy Mapping
- Title(参考訳): Sparse Kernel-based Occupancy Mapping を用いた未知環境における自律ナビゲーション
- Authors: Thai Duong, Nikhil Das, Michael Yip, Nikolay Atanasov
- Abstract要約: 本稿では,未知環境下を走行する自律ロボット上でのリアルタイムの乗員マッピングと衝突チェックに焦点を当てた。
本稿では,カーネルパーセプトロン分類器の決定境界によって占有空間と自由空間を分離する新しいマップ表現を提案する。
我々は,構成空間における障害物境界を表現するために,サポートベクトルの集合をごくわずかに維持するオンライントレーニングアルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 19.169233494235314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on real-time occupancy mapping and collision checking
onboard an autonomous robot navigating in an unknown environment. We propose a
new map representation, in which occupied and free space are separated by the
decision boundary of a kernel perceptron classifier. We develop an online
training algorithm that maintains a very sparse set of support vectors to
represent obstacle boundaries in configuration space. We also derive conditions
that allow complete (without sampling) collision-checking for piecewise-linear
and piecewise-polynomial robot trajectories. We demonstrate the effectiveness
of our mapping and collision checking algorithms for autonomous navigation of
an Ackermann-drive robot in unknown environments.
- Abstract(参考訳): 本稿では,未知環境内を走行する自律ロボットのリアルタイム占有マッピングと衝突点検について述べる。
本稿では,カーネルパーセプトロン分類器の決定境界によって占有空間と自由空間を分離する新しいマップ表現を提案する。
我々は,構成空間における障害物境界を表現するために,サポートベクトルの集合をごくわずかに維持するオンライントレーニングアルゴリズムを開発した。
また,分割線形および分割多項ロボット軌道の完全な衝突チェックを可能にする条件を導出する。
未知環境におけるアッカーマン駆動ロボットの自律走行におけるマッピングと衝突検出アルゴリズムの有効性を実証する。
関連論文リスト
- QuAD: Query-based Interpretable Neural Motion Planning for Autonomous Driving [33.609780917199394]
自動運転車は環境を理解して適切な行動を決定する必要がある。
従来のシステムは、シーン内のエージェントを見つけるためにオブジェクト検出に依存していた。
我々は、最初に占有する時間的自律性を知覚するカスケードモジュールから遠ざかる、統一的で解釈可能で効率的な自律フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-01T21:11:43Z) - NeuPAN: Direct Point Robot Navigation with End-to-End Model-based Learning [67.53972459080437]
本稿では,リアルタイム,高精度,ロボットに依存しない,環境に適応しないロボットナビゲーションソリューションであるNeuPANについて述べる。
NeuPANは密結合の知覚移動フレームワークを活用し、既存のアプローチと比較して2つの重要なイノベーションを持っている。
我々は,車載ロボット,車輪脚ロボット,乗用車において,実環境と実環境の両方でNeuPANを評価した。
論文 参考訳(メタデータ) (2024-03-11T15:44:38Z) - Construction of Object Boundaries for the Autopilotof a Surface Robot
from Satellite Imagesusing Computer Vision Methods [101.18253437732933]
衛星地図上での水物体を検出する手法を提案する。
輪郭のGPS座標を計算するアルゴリズムを作成する。
提案アルゴリズムは,表面ロボットオートパイロットモジュールに適したフォーマットで結果の保存を可能にする。
論文 参考訳(メタデータ) (2022-12-05T12:07:40Z) - Polyline Based Generative Navigable Space Segmentation for Autonomous
Visual Navigation [57.3062528453841]
ロボットが教師なしの方法で移動可能な空間分割を学習できるようにするための表現学習ベースのフレームワークを提案する。
提案するPSV-Netは,単一のラベルを使わずとも,高精度で視覚ナビゲーション可能な空間を学習可能であることを示す。
論文 参考訳(メタデータ) (2021-10-29T19:50:48Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision
Trees [55.9643422180256]
本稿では,ロボットの密集した動的環境における衝突のない軌道を計算するためのセンサベース学習ナビゲーションアルゴリズムを提案する。
我々のアプローチは、sim2realパラダイムを用いて訓練された深層強化学習に基づくエキスパートポリシーを使用する。
シミュレーション環境でのアルゴリズムの利点を強調し、移動中の歩行者の間でClearpath Jackalロボットをナビゲートする。
論文 参考訳(メタデータ) (2021-04-22T01:33:10Z) - Inverse reinforcement learning for autonomous navigation via
differentiable semantic mapping and planning [20.66819092398541]
本稿では,距離と意味カテゴリー観測を用いた自律ナビゲーションのための逆強化学習について述べる。
観測シーケンスから意味的カテゴリ確率を推測するマップエンコーダと、意味論的特徴に対するディープニューラルネットワークとして定義されるコストエンコーダを開発している。
本研究では,建物,歩道,路面のセマンティックな観察に頼って,自律走行型CARLAシミュレータの交通ルールを追従する手法を提案する。
論文 参考訳(メタデータ) (2021-01-01T07:41:08Z) - High-Speed Robot Navigation using Predicted Occupancy Maps [0.0]
ロボットがセンサの地平線を越えて広がる空間を高速で予測できるアルゴリズム手法について検討する。
我々は、人間のアノテートラベルを必要とせず、実世界のデータからトレーニングされた生成ニューラルネットワークを用いてこれを実現する。
既存の制御アルゴリズムを拡張し、予測空間を活用することで、衝突のない計画とナビゲーションを高速で改善します。
論文 参考訳(メタデータ) (2020-12-22T16:25:12Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。