論文の概要: High-Speed Robot Navigation using Predicted Occupancy Maps
- arxiv url: http://arxiv.org/abs/2012.12142v1
- Date: Tue, 22 Dec 2020 16:25:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-26 07:18:48.274654
- Title: High-Speed Robot Navigation using Predicted Occupancy Maps
- Title(参考訳): 予測作業地図を用いた高速ロボットナビゲーション
- Authors: Kapil D. Katyal (1 and 2), Adam Polevoy (1), Joseph Moore (1), Craig
Knuth (1), Katie M. Popek (1) ((1) Johns Hopkins University Applied Physics
Lab, (2) Dept. of Comp. Sci., Johns Hopkins University)
- Abstract要約: ロボットがセンサの地平線を越えて広がる空間を高速で予測できるアルゴリズム手法について検討する。
我々は、人間のアノテートラベルを必要とせず、実世界のデータからトレーニングされた生成ニューラルネットワークを用いてこれを実現する。
既存の制御アルゴリズムを拡張し、予測空間を活用することで、衝突のない計画とナビゲーションを高速で改善します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safe and high-speed navigation is a key enabling capability for real world
deployment of robotic systems. A significant limitation of existing approaches
is the computational bottleneck associated with explicit mapping and the
limited field of view (FOV) of existing sensor technologies. In this paper, we
study algorithmic approaches that allow the robot to predict spaces extending
beyond the sensor horizon for robust planning at high speeds. We accomplish
this using a generative neural network trained from real-world data without
requiring human annotated labels. Further, we extend our existing control
algorithms to support leveraging the predicted spaces to improve collision-free
planning and navigation at high speeds. Our experiments are conducted on a
physical robot based on the MIT race car using an RGBD sensor where were able
to demonstrate improved performance at 4 m/s compared to a controller not
operating on predicted regions of the map.
- Abstract(参考訳): 安全で高速なナビゲーションは、ロボットシステムの現実的な展開を可能にする重要な能力である。
既存のアプローチの大きな制限は、明示的なマッピングと既存のセンサー技術の限られた視野(FOV)に関連する計算ボトルネックである。
本稿では,ロボットがセンサホライズンを超えて広がる空間を高速に予測し,ロバストな計画を行うためのアルゴリズム的手法について検討する。
我々は、人間のアノテートラベルを必要とせず、実世界のデータからトレーニングされた生成ニューラルネットワークを用いてこれを実現する。
さらに,既存の制御アルゴリズムを拡張して予測空間の活用を支援し,衝突のない計画とナビゲーションを高速に向上する。
実験は,マップの予測領域で動作しないコントローラと比較して4m/sで性能が向上したrgbdセンサを用いて,mitのレースカーに基づく物理ロボットを用いて実施した。
関連論文リスト
- Neural Implicit Swept Volume Models for Fast Collision Detection [0.0]
本稿では,深層学習に基づく符号付き距離計算の高速化と幾何衝突チェッカーの精度保証を併用したアルゴリズムを提案する。
シミュレーションおよび実世界のロボット実験において、我々のアプローチを検証するとともに、商用ビンピッキングアプリケーションを高速化できることを実証する。
論文 参考訳(メタデータ) (2024-02-23T12:06:48Z) - Radar-Based Recognition of Static Hand Gestures in American Sign
Language [17.021656590925005]
本研究では,先進レーダ線トレーシングシミュレータによる合成データの有効性について検討した。
シミュレータは直感的な材料モデルを採用し、データ多様性を導入するように調整することができる。
NNを合成データで専用にトレーニングしているにもかかわらず、実際の測定データでテストを行うと、有望な性能を示す。
論文 参考訳(メタデータ) (2024-02-20T08:19:30Z) - NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for
Autonomous Driving [57.03126447713602]
本稿では,自動車のRADARセンサを用いて動的障害物や乾燥可能な自由空間を検出するディープニューラルネットワーク(DNN)を提案する。
ネットワークは組み込みGPU上でリアルタイムよりも高速に動作し、地理的領域にわたって優れた一般化を示す。
論文 参考訳(メタデータ) (2022-09-29T01:30:34Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - Coupling Vision and Proprioception for Navigation of Legged Robots [65.59559699815512]
我々は視覚と受容の相補的な強みを利用して、脚のあるロボットでポイントゴールナビゲーションを実現する。
車輪付きロボット(LoCoBot)のベースラインよりも優れた性能を示す。
また,センサーと計算能力を備えた四足歩行ロボットに,我々のシステムを実環境に展開することも示す。
論文 参考訳(メタデータ) (2021-12-03T18:59:59Z) - CNN-based Omnidirectional Object Detection for HermesBot Autonomous
Delivery Robot with Preliminary Frame Classification [53.56290185900837]
予備的バイナリフレーム分類を用いた物体検出のためのニューラルネットワークの最適化アルゴリズムを提案する。
周囲に6台のローリングシャッターカメラを備えた自律移動ロボットを360度視野として実験装置として使用した。
論文 参考訳(メタデータ) (2021-10-22T15:05:37Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
本稿では,事前学習されたロボット知覚モデルの最終的な目的と協調して設計された感覚データのタスク関連表現を学習するアルゴリズムを提案する。
本アルゴリズムは,ロボットの知覚データを競合する手法の最大11倍まで積極的に圧縮する。
論文 参考訳(メタデータ) (2020-11-06T07:39:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。