Geometric properties of adiabatic quantum thermal machines
- URL: http://arxiv.org/abs/2002.02225v2
- Date: Tue, 9 Jun 2020 10:25:53 GMT
- Title: Geometric properties of adiabatic quantum thermal machines
- Authors: Bibek Bhandari, Pablo Terr\'en Alonso, Fabio Taddei, Felix von Oppen,
Rosario Fazio and Liliana Arrachea
- Abstract summary: We show that many observables characterizing this operating mode and the performance of the machine are of geometric nature.
We show that the operation of adiabatic thermal machines, and consequently also their efficiency, are intimately related to these geometric aspects.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a general unified approach for the study of quantum thermal
machines, including both heat engines and refrigerators, operating under
periodic adiabatic driving and in contact with thermal reservoirs kept at
different temperatures. We show that many observables characterizing this
operating mode and the performance of the machine are of geometric nature.
Heat-work conversion mechanisms and dissipation of energy can be described,
respectively, by the antisymmetric and symmetric components of a thermal
geometric tensor defined in the space of time-dependent parameters generalized
to include the temperature bias. The antisymmetric component can be identified
as a Berry curvature, while the symmetric component defines the metric of the
manifold. We show that the operation of adiabatic thermal machines, and
consequently also their efficiency, are intimately related to these geometric
aspects. We illustrate these ideas by discussing two specific cases: a slowly
driven qubit asymmetrically coupled to two bosonic reservoirs kept at different
temperatures, and a quantum dot driven by a rotating magnetic field and
strongly coupled to electron reservoirs with different polarizations. Both
examples are already amenable for an experimental verification.
Related papers
- Thermodynamics of hybrid quantum rotor devices [0.0]
We investigate the thermodynamics of a hybrid quantum device consisting of two qubits collectively interacting with a quantum rotor.
We identify the functioning of the device as a thermal engine, a refrigerator or an accelerator.
arXiv Detail & Related papers (2023-04-17T10:00:14Z) - Spin-chain based quantum thermal machines [1.5293427903448022]
We study the performance of quantum thermal machines in which the working fluid of the model is represented by a many-body quantum system.
A formal characterization of the limit cycles of the set-up is presented in terms of the mixing properties of the quantum channel.
For the special case in which the system is a collection of spin 1/2 particles coupled via magnetization preserving Hamiltonians, a full characterization of the possible operational regimes is provided.
arXiv Detail & Related papers (2023-03-27T20:00:02Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Algebraic approach to a two-qubit quantum thermal machine [0.0]
We investigate the thermodynamic properties of an engine formed by two coupled q-bits, performing an Otto cycle.
For the coupling, we consider the 1-d isotropic Heisenberg model.
We numerically investigate the engine efficiency under a time varying Rabi frequency.
arXiv Detail & Related papers (2022-08-09T17:26:13Z) - Heat transport and rectification via quantum statistical and coherence
asymmetries [0.0]
We show that heat rectification is possible even with symmetric medium-bath couplings if the two baths differ in quantum statistics or coherence.
Our results can be significant for heat management in hybrid open quantum systems or solid-state thermal circuits.
arXiv Detail & Related papers (2022-04-14T15:59:03Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Geometric optimization of non-equilibrium adiabatic thermal machines and
implementation in a qubit system [0.0]
We show that the problem of optimizing the power generation of a heat engine and the efficiency of both the heat engine and the refrigerator operational modes is reduced to an isoperimetric problem with non-trivial underlying metrics and curvature.
We illustrate this procedure in a qubit coupled to two reservoirs operating as a thermal machine by means of an adiabatic protocol.
arXiv Detail & Related papers (2021-09-26T16:31:15Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Maximal power for heat engines: role of asymmetric interaction times [110.83289076967895]
We introduce the idea of adjusting the interaction time asymmetry in order to optimize the engine performance.
Distinct optimization protocols are analyzed in the framework of thermodynamics.
arXiv Detail & Related papers (2020-12-16T22:26:14Z) - Rectification induced by geometry in two-dimensional quantum spin
lattices [58.720142291102135]
We address the role of geometrical asymmetry in the occurrence of spin rectification in two-dimensional quantum spin chains.
We show that geometrical asymmetry, along with inhomogeneous magnetic fields, can induce spin current rectification even in the XX model.
arXiv Detail & Related papers (2020-12-02T18:10:02Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.