論文の概要: Developing a Hybrid Data-Driven, Mechanistic Virtual Flow Meter -- a
Case Study
- arxiv url: http://arxiv.org/abs/2002.02737v3
- Date: Mon, 26 Oct 2020 08:16:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 05:21:19.465273
- Title: Developing a Hybrid Data-Driven, Mechanistic Virtual Flow Meter -- a
Case Study
- Title(参考訳): ハイブリッドデータ駆動, メカニックな仮想フローメータの開発 - 事例研究
- Authors: Mathilde Hotvedt, Bjarne Grimstad, Lars Imsland
- Abstract要約: 本研究は、上記の2つの専門分野の技術を生かしたハイブリッド・モデリング手法について検討し、良好な生産チョークをモデル化する。
チョークは、第1原理方程式の単純化されたセットとニューラルネットワークで表現され、弁流係数を推定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Virtual flow meters, mathematical models predicting production flow rates in
petroleum assets, are useful aids in production monitoring and optimization.
Mechanistic models based on first-principles are most common, however,
data-driven models exploiting patterns in measurements are gaining popularity.
This research investigates a hybrid modeling approach, utilizing techniques
from both the aforementioned areas of expertise, to model a well production
choke. The choke is represented with a simplified set of first-principle
equations and a neural network to estimate the valve flow coefficient.
Historical production data from the petroleum platform Edvard Grieg is used for
model validation. Additionally, a mechanistic and a data-driven model are
constructed for comparison of performance. A practical framework for
development of models with varying degree of hybridity and stochastic
optimization of its parameters is established. Results of the hybrid model
performance are promising albeit with considerable room for improvements.
- Abstract(参考訳): 石油資産の生産流量を予測する数理モデルである仮想流量計は、生産監視や最適化に役立つ。
第一原理に基づく機械モデルが最も一般的であるが、測定でパターンを利用するデータ駆動モデルが人気を集めている。
本研究では,上記の2つの専門分野の技術を生かしたハイブリッドモデリング手法を用いて,生産効率のよいチョークをモデル化する。
このチョークは、第一原理方程式の簡易集合と、弁流量係数を推定するニューラルネットワークで表される。
石油プラットフォーム edvard grieg の過去の生産データはモデル検証に使われている。
さらに,性能比較のために,メカニスティックモデルとデータ駆動モデルを構築した。
パラメータのハイブリッド性と確率的最適化の程度が異なるモデルを開発するための実践的枠組みを確立する。
ハイブリッドモデルの性能は、改善の余地はあるものの有望である。
関連論文リスト
- Combining Physics-based and Data-driven Modeling for Building Energy Systems [5.437298646956505]
建築エネルギーモデリングは、建築エネルギーシステムの運用を最適化する上で重要な役割を担っている。
研究者たちは物理ベースのモデルとデータ駆動モデルとハイブリッドなアプローチを組み合わせている。
実世界のケーススタディを通じて、エネルギーモデリングにおける4つの主要なハイブリッドアプローチを評価した。
論文 参考訳(メタデータ) (2024-11-01T21:56:39Z) - Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
エネルギーベース拡散言語モデル(Energy-based Diffusion Language Model, EDLM)は、拡散ステップごとに全シーケンスレベルで動作するエネルギーベースモデルである。
我々のフレームワークは、既存の拡散モデルよりも1.3$times$のサンプリングスピードアップを提供する。
論文 参考訳(メタデータ) (2024-10-28T17:25:56Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development [67.55944651679864]
統合データモデル共同開発に適した新しいサンドボックススイートを提案する。
このサンドボックスは包括的な実験プラットフォームを提供し、データとモデルの両方の迅速なイテレーションと洞察駆動による改善を可能にする。
また、徹底的なベンチマークから得られた実りある洞察を明らかにし、データ品質、多様性、モデル行動の間の重要な相互作用に光を当てています。
論文 参考訳(メタデータ) (2024-07-16T14:40:07Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
本稿では,RLによる報酬モデルの最適化により,最先端拡散モデルを微調整するハイブリッド手法を提案する。
我々は、報酬モデルの補間能力を活用し、オフラインデータにおいて最良の設計を上回るアプローチの能力を実証する。
論文 参考訳(メタデータ) (2024-05-30T03:57:29Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
混合データセットに対する生成モデルの訓練が与える影響について検討する。
まず、初期生成モデルがデータ分布を十分に近似する条件下で反復学習の安定性を実証する。
我々は、正規化フローと最先端拡散モデルを繰り返し訓練することにより、合成画像と自然画像の両方に関する我々の理論を実証的に検証する。
論文 参考訳(メタデータ) (2023-09-30T16:41:04Z) - Hybrid Machine Learning Modeling of Engineering Systems -- A
Probabilistic Perspective Tested on a Multiphase Flow Modeling Case Study [0.0]
本稿では,第1原理モデルの処理条件のチューニングを可能にする,ハイブリッドモデリング機械学習フレームワークを提案する。
我々の手法は第一原理モデルパラメータの期待値を推定するだけでなく、これらの推定の不確実性を定量化する。
シミュレーションの結果, 得られたハイブリッドモデルの不確実性推定を用いて, より良い操作決定を行う方法が示された。
論文 参考訳(メタデータ) (2022-05-18T20:15:25Z) - Development of Deep Transformer-Based Models for Long-Term Prediction of
Transient Production of Oil Wells [9.832272256738452]
本稿では,油井の過渡生産に関するデータ駆動型モデリング手法を提案する。
油井の様々なパラメータからなる多変量時系列に基づいて訓練された変圧器ベースニューラルネットワークを適用した。
複素過渡的な油田レベルのパターンをシミュレートするために,複数井戸に対するトランスフォーマーアーキテクチャに基づく単一井戸モデルを一般化する。
論文 参考訳(メタデータ) (2021-10-12T15:00:45Z) - Hybrid modeling of the human cardiovascular system using NeuralFMUs [0.0]
ハイブリッドなモデリングプロセスは、より快適で、システム知識を必要とせず、第一原理に基づくモデリングに比べてエラーの少ないことが示される。
結果として得られたハイブリッドモデルは、純粋な第一原理のホワイトボックスモデルに比べて計算性能が向上した。
考慮されたユースケースは、医療領域内外における他のモデリングおよびシミュレーションアプリケーションの例として機能する。
論文 参考訳(メタデータ) (2021-09-10T13:48:43Z) - KNODE-MPC: A Knowledge-based Data-driven Predictive Control Framework
for Aerial Robots [5.897728689802829]
我々は、知識に基づくニューラル常微分方程式(KNODE)というディープラーニングツールを用いて、第一原理から得られたモデルを拡張する。
得られたハイブリッドモデルは、名目上の第一原理モデルと、シミュレーションまたは実世界の実験データから学習したニューラルネットワークの両方を含む。
閉ループ性能を改善するため、ハイブリッドモデルはKNODE-MPCとして知られる新しいMPCフレームワークに統合される。
論文 参考訳(メタデータ) (2021-09-10T12:09:18Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
モデル予測だけでなく、その解釈可能性も、プロセスエンジニアに公開する必要があります。
LIMEに基づくモデルに依存しない局所的解釈可能性ソリューションが最近出現し、元の手法が改良された。
本稿では, 燃焼炉で生成する高温金属の温度を推定するデータ駆動型モデルの局所的解釈可能性に関する新しいアプローチ, VAE-LIMEを提案する。
論文 参考訳(メタデータ) (2020-07-15T07:07:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。