論文の概要: PLLay: Efficient Topological Layer based on Persistence Landscapes
- arxiv url: http://arxiv.org/abs/2002.02778v4
- Date: Mon, 18 Jan 2021 00:44:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 04:27:58.339035
- Title: PLLay: Efficient Topological Layer based on Persistence Landscapes
- Title(参考訳): PLLay:永続景観に基づく効率的な地形層
- Authors: Kwangho Kim, Jisu Kim, Manzil Zaheer, Joon Sik Kim, Frederic Chazal,
and Larry Wasserman
- Abstract要約: PLLayは、永続化ランドスケープに基づいた一般的なディープラーニングモデルのための新しいトポロジ的レイヤである。
任意の濾過を伴う一般的な永続ホモロジーに対して、層入力に関する微分可能性を示す。
- 参考スコア(独自算出の注目度): 24.222495922671442
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose PLLay, a novel topological layer for general deep learning models
based on persistence landscapes, in which we can efficiently exploit the
underlying topological features of the input data structure. In this work, we
show differentiability with respect to layer inputs, for a general persistent
homology with arbitrary filtration. Thus, our proposed layer can be placed
anywhere in the network and feed critical information on the topological
features of input data into subsequent layers to improve the learnability of
the networks toward a given task. A task-optimal structure of PLLay is learned
during training via backpropagation, without requiring any input featurization
or data preprocessing. We provide a novel adaptation for the DTM function-based
filtration, and show that the proposed layer is robust against noise and
outliers through a stability analysis. We demonstrate the effectiveness of our
approach by classification experiments on various datasets.
- Abstract(参考訳): 本研究では,パーシステンスランドスケープに基づく一般ディープラーニングモデルのための新しいトポロジカルレイヤpllayを提案し,入力データ構造の基盤となるトポロジ的特徴を効率的に活用する。
本研究では,任意のフィルタを持つ一般永続ホモロジーに対して,層入力に関して微分可能性を示す。
したがって,提案するレイヤをネットワーク内の任意の場所に配置し,入力データのトポロジ的特徴に関する重要な情報を次のレイヤに供給することで,ネットワークの学習性を向上させることができる。
PLLayのタスク最適構造は、入力処理やデータ前処理を必要とせずに、バックプロパゲーションを通じてトレーニング中に学習される。
本稿では,DTM関数に基づくフィルタの新しい適応法を提案し,安定性解析により,提案した層が雑音や外れ値に対して頑健であることを示す。
各種データセットの分類実験により,本手法の有効性を示す。
関連論文リスト
- Image Classification using Combination of Topological Features and
Neural Networks [1.0323063834827417]
我々は、データ空間から重要なトポロジ的特徴を抽出するために、永続的ホモロジー法、すなわち、トポロジ的データ解析(TDA)の技法を用いる。
これは、MNISTデータセット内の複数のクラスから画像を分類することを目的として行われた。
提案手法は,1ストリームと2ストリームのニューラルネットワークによって構成されるディープラーニングアプローチにトポロジ的特徴を挿入する。
論文 参考訳(メタデータ) (2023-11-10T20:05:40Z) - Understanding Deep Representation Learning via Layerwise Feature
Compression and Discrimination [33.273226655730326]
深層線形ネットワークの各層は、幾何速度でクラス内特徴を徐々に圧縮し、線形速度でクラス間特徴を識別することを示す。
これは、ディープ線形ネットワークの階層的表現における特徴進化の最初の定量的評価である。
論文 参考訳(メタデータ) (2023-11-06T09:00:38Z) - Learning the Right Layers: a Data-Driven Layer-Aggregation Strategy for
Semi-Supervised Learning on Multilayer Graphs [2.752817022620644]
多層グラフ上のクラスタリング(あるいはコミュニティ検出)は、さらにいくつかの複雑さを生じさせる。
主な課題の1つは、各レイヤがクラスタのイテレーションの割り当てにどの程度貢献するかを確立することである。
利用可能な入力ラベルから異なる層を最適に非線形に組み合わせたパラメータフリーなラプラシアン正規化モデルを提案する。
論文 参考訳(メタデータ) (2023-05-31T19:50:11Z) - Rethinking Persistent Homology for Visual Recognition [27.625893409863295]
本稿では,様々な訓練シナリオにおける画像分類におけるトポロジ的特性の有効性を詳細に分析する。
例えば、小さなデータセット上で単純なネットワークをトレーニングするなど、トポロジ的特徴から最も恩恵を受けるシナリオを特定します。
論文 参考訳(メタデータ) (2022-07-09T08:01:11Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
ニューラルネットワークのトレーニングに属性マップを利用すると、モデルの正規化が向上し、性能が向上することを示す。
特に、我々の汎用的なドメインに依存しないアプローチは、ビジョン、自然言語処理、時系列タスクにおける最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-30T13:34:46Z) - Imposing Consistency for Optical Flow Estimation [73.53204596544472]
プロキシタスクによる一貫性の導入は、データ駆動学習を強化することが示されている。
本稿では,光フロー推定のための新しい,効果的な整合性戦略を提案する。
論文 参考訳(メタデータ) (2022-04-14T22:58:30Z) - Activation Landscapes as a Topological Summary of Neural Network
Performance [0.0]
我々は、ディープニューラルネットワーク(DNN)の連続層を通過するデータがどのように変換されるかを研究する。
ネットワークの各層におけるアクティベーションデータの永続的ホモロジーを計算し、その情報を永続的景観を用いて要約する。
得られた特徴マップは、ネットワークの視覚的情報化と、統計分析と機械学習のためのカーネルの両方を提供する。
論文 参考訳(メタデータ) (2021-10-19T17:45:36Z) - Localized Persistent Homologies for more Effective Deep Learning [60.78456721890412]
ネットワークトレーニング中の位置を考慮に入れた新しいフィルタ機能を利用する手法を提案する。
この方法で訓練されたネットワークが抽出した曲線構造のトポロジを回復するのに役立つ道路の2次元画像と神経過程の3次元画像スタックを実験的に実証した。
論文 参考訳(メタデータ) (2021-10-12T19:28:39Z) - Understanding and Diagnosing Vulnerability under Adversarial Attacks [62.661498155101654]
ディープニューラルネットワーク(DNN)は敵の攻撃に弱いことが知られている。
本稿では,潜在変数の分類に使用される特徴を説明するために,新しい解釈可能性手法であるInterpretGANを提案する。
また、各層がもたらす脆弱性を定量化する最初の診断方法も設計する。
論文 参考訳(メタデータ) (2020-07-17T01:56:28Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
我々は,低レベルな外観特徴,高レベルな意味特徴,グローバルな文脈特徴を統合化するための新しいネットワークGCPANetを提案する。
提案手法は, 定量的かつ定性的に, 最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-03-02T04:26:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。