論文の概要: Rethinking Persistent Homology for Visual Recognition
- arxiv url: http://arxiv.org/abs/2207.04220v1
- Date: Sat, 9 Jul 2022 08:01:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-12 14:28:42.760171
- Title: Rethinking Persistent Homology for Visual Recognition
- Title(参考訳): 視覚認識のための持続的ホモロジー再考
- Authors: Ekaterina Khramtsova, Guido Zuccon, Xi Wang, Mahsa Baktashmotlagh
- Abstract要約: 本稿では,様々な訓練シナリオにおける画像分類におけるトポロジ的特性の有効性を詳細に分析する。
例えば、小さなデータセット上で単純なネットワークをトレーニングするなど、トポロジ的特徴から最も恩恵を受けるシナリオを特定します。
- 参考スコア(独自算出の注目度): 27.625893409863295
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Persistent topological properties of an image serve as an additional
descriptor providing an insight that might not be discovered by traditional
neural networks. The existing research in this area focuses primarily on
efficiently integrating topological properties of the data in the learning
process in order to enhance the performance. However, there is no existing
study to demonstrate all possible scenarios where introducing topological
properties can boost or harm the performance. This paper performs a detailed
analysis of the effectiveness of topological properties for image
classification in various training scenarios, defined by: the number of
training samples, the complexity of the training data and the complexity of the
backbone network. We identify the scenarios that benefit the most from
topological features, e.g., training simple networks on small datasets.
Additionally, we discuss the problem of topological consistency of the datasets
which is one of the major bottlenecks for using topological features for
classification. We further demonstrate how the topological inconsistency can
harm the performance for certain scenarios.
- Abstract(参考訳): 画像の永続的なトポロジー特性は、従来のニューラルネットワークでは発見できないインサイトを提供する追加のディスクリプタとして機能する。
この領域における既存の研究は主に、学習プロセスにおけるデータのトポロジ的特性を効率的に統合して、パフォーマンスを向上させることに焦点を当てている。
しかしながら、トポロジカルプロパティを導入することでパフォーマンスを向上あるいは損なうという、可能なすべてのシナリオを実証する既存の研究は存在しない。
本稿では,トレーニングサンプル数,トレーニングデータの複雑さ,バックボーンネットワークの複雑さなどによって定義される,様々なトレーニングシナリオにおける画像分類におけるトポロジカル特性の有効性を詳細に分析する。
例えば、小さなデータセット上で単純なネットワークをトレーニングするなど、トポロジカルな特徴から最も恩恵を受けるシナリオを特定します。
さらに,分類にトポロジ的特徴を用いる際の主要なボトルネックの一つであるデータセットのトポロジ的一貫性の問題についても論じる。
さらに、トポロジ的不整合が特定のシナリオのパフォーマンスにどのように影響するかを示す。
関連論文リスト
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
位相的正しさは多くの画像分割タスクにおいて重要な役割を果たす。
ほとんどのネットワークは、Diceのようなピクセル単位の損失関数を使って、トポロジカルな精度を無視して訓練されている。
トポロジ的に正確な画像セグメンテーションのための新しいグラフベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-05T16:20:14Z) - Topological Learning in Multi-Class Data Sets [0.3050152425444477]
フィードフォワードディープニューラルネットワーク(DNN)の学習におけるトポロジカル複雑度の影響について検討する。
我々は,複数の構築およびオープンソースデータセットに対するトポロジ的分類アルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2023-01-23T21:54:25Z) - Do Neural Networks Trained with Topological Features Learn Different
Internal Representations? [1.418465438044804]
本研究では、トポロジカルな特徴で訓練されたモデルが、元の生データで学習したモデルと根本的に異なるデータの内部表現を学習するかどうかを検討する。
構造的には、トポロジカルな特徴に基づいて訓練・評価されたモデルの隠れ表現は、対応する生データに基づいて訓練・評価されたモデルと大きく異なることがわかった。
これは、生データに基づいてトレーニングされたニューラルネットワークが、予測を行う過程で限られたトポロジ的特徴を抽出することを意味すると推測する。
論文 参考訳(メタデータ) (2022-11-14T19:19:04Z) - Topological Data Analysis of Neural Network Layer Representations [0.0]
単純なフィードフォワードニューラルネットワークの、クラインボトルのようなねじれのある修正トーラスの層表現の位相的特徴を計算した。
結果として生じるノイズは、これらの特徴を計算するための永続的ホモロジーの能力を妨げた。
論文 参考訳(メタデータ) (2022-07-01T00:51:19Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
ニューラルネットワークのトレーニングに属性マップを利用すると、モデルの正規化が向上し、性能が向上することを示す。
特に、我々の汎用的なドメインに依存しないアプローチは、ビジョン、自然言語処理、時系列タスクにおける最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-30T13:34:46Z) - Activation Landscapes as a Topological Summary of Neural Network
Performance [0.0]
我々は、ディープニューラルネットワーク(DNN)の連続層を通過するデータがどのように変換されるかを研究する。
ネットワークの各層におけるアクティベーションデータの永続的ホモロジーを計算し、その情報を永続的景観を用いて要約する。
得られた特徴マップは、ネットワークの視覚的情報化と、統計分析と機械学習のためのカーネルの両方を提供する。
論文 参考訳(メタデータ) (2021-10-19T17:45:36Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - CDEvalSumm: An Empirical Study of Cross-Dataset Evaluation for Neural
Summarization Systems [121.78477833009671]
データセット間設定下での様々な要約モデルの性能について検討する。
異なるドメインの5つのデータセットに対する11の代表的な要約システムに関する包括的な研究は、モデルアーキテクチャと生成方法の影響を明らかにしている。
論文 参考訳(メタデータ) (2020-10-11T02:19:15Z) - A Topological Framework for Deep Learning [0.7310043452300736]
機械学習における分類問題は、非常に穏やかな条件下では常に解決可能であることを示す。
特に,ソフトマックス分類ネットワークは,有限列の位相移動によって入力位相空間に作用し,その分類処理を実現する。
論文 参考訳(メタデータ) (2020-08-31T15:56:42Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
ニューラルネットワークは、勾配に基づくトレーニングの過程で、そのサイズとトポロジの両方を学習できるフレキシブルなセットアップを導入します。
結果として得られるネットワークは、特定の学習タスクとデータセットに合わせたグラフの構造を持つ。
論文 参考訳(メタデータ) (2020-06-22T12:46:44Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。