論文の概要: Learning Stochastic Behaviour from Aggregate Data
- arxiv url: http://arxiv.org/abs/2002.03513v7
- Date: Mon, 7 Jun 2021 13:41:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 08:20:11.457991
- Title: Learning Stochastic Behaviour from Aggregate Data
- Title(参考訳): 集約データから確率的行動を学ぶ
- Authors: Shaojun Ma, Shu Liu, Hongyuan Zha, Haomin Zhou
- Abstract要約: 集約データから非線形ダイナミクスを学習することは、各個人の完全な軌道が利用できないため、難しい問題である。
本稿では,Fokker Planck Equation (FPE) の弱い形式を用いて,サンプル形式のデータの密度変化を記述する手法を提案する。
このようなサンプルベースのフレームワークでは、偏微分方程式(PDE)FPEを明示的に解くことなく、集約データから非線形ダイナミクスを学習することができる。
- 参考スコア(独自算出の注目度): 52.012857267317784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning nonlinear dynamics from aggregate data is a challenging problem
because the full trajectory of each individual is not available, namely, the
individual observed at one time may not be observed at the next time point, or
the identity of individual is unavailable. This is in sharp contrast to
learning dynamics with full trajectory data, on which the majority of existing
methods are based. We propose a novel method using the weak form of Fokker
Planck Equation (FPE) -- a partial differential equation -- to describe the
density evolution of data in a sampled form, which is then combined with
Wasserstein generative adversarial network (WGAN) in the training process. In
such a sample-based framework we are able to learn the nonlinear dynamics from
aggregate data without explicitly solving the partial differential equation
(PDE) FPE. We demonstrate our approach in the context of a series of synthetic
and real-world data sets.
- Abstract(参考訳): 集約データから非線形ダイナミクスを学習することは、各個人の完全な軌跡が得られない、すなわち、一度に観察された個人が次の時点に観測されない、あるいは個々のアイデンティティが利用できないため、難しい問題である。
これは、既存の手法の大部分がベースとなっている完全な軌跡データによる動的学習とは対照的である。
本研究では,fokker planck方程式(fpe,偏微分方程式)の弱形式を用いて,サンプル形式でのデータの密度発展を記述する新しい手法を提案し,wassersteingenerative adversarial network (wgan) と組み合わせる。
このようなサンプルベースのフレームワークでは、偏微分方程式(PDE)FPEを明示的に解くことなく、集約データから非線形ダイナミクスを学習することができる。
我々は、一連の合成および実世界のデータセットの文脈で、我々のアプローチを実証する。
関連論文リスト
- Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - $Φ$-DVAE: Physics-Informed Dynamical Variational Autoencoders for Unstructured Data Assimilation [3.2873782624127843]
物理インフォームドな動的変分オートエンコーダ(Phi$-DVAE)を開発し、様々なデータストリームを時間進化物理系に埋め込む。
我々の手法は、非構造化データを潜在力学系に同化するために、潜在状態空間モデルのための標準的な非線形フィルタとVOEを組み合わせたものである。
変分ベイズフレームワークは、符号化、潜時状態、未知のシステムパラメータの合同推定に使用される。
論文 参考訳(メタデータ) (2022-09-30T17:34:48Z) - Discovering stochastic dynamical equations from biological time series data [0.0]
本稿では,変数の時系列データを入力とし,微分状態方程式を出力する方程式探索を提案する。
時系列データのみから,正しい方程式を復元し,その安定性を正確に推定できることを示す。
魚の学習と単細胞移動という2つの実世界のデータセット上で,本手法を実証する。
論文 参考訳(メタデータ) (2022-05-05T13:44:24Z) - Learn from Unpaired Data for Image Restoration: A Variational Bayes
Approach [18.007258270845107]
境界分布から抽出したデータから結合確率密度関数を学習するための深層生成法 LUD-VAE を提案する。
本稿では,LUD-VAEによって生成された合成データを用いて,実世界の画像認識と超分解能タスクに適用し,モデルを訓練する。
論文 参考訳(メタデータ) (2022-04-21T13:27:17Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Imitating Deep Learning Dynamics via Locally Elastic Stochastic
Differential Equations [20.066631203802302]
本研究では, 深層学習における特徴の進化を, それぞれが学習サンプルに対応する微分方程式(SDE)を用いて研究する。
我々の結果は、ニューラルネットワークのトレーニング力学における局所弾性の決定的な役割に光を当てた。
論文 参考訳(メタデータ) (2021-10-11T17:17:20Z) - Discovery of Nonlinear Dynamical Systems using a Runge-Kutta Inspired
Dictionary-based Sparse Regression Approach [9.36739413306697]
機械学習と辞書ベースの学習を数値解析ツールと組み合わせ,微分方程式の制御を探索する。
我々は、サンプリング体制を超えてよりよく一般化しやすい解釈可能で準同型モデルを得る。
生物ネットワークに通常現れる有理非線形性を含む支配方程式の拡張について論じる。
論文 参考訳(メタデータ) (2021-05-11T08:46:51Z) - Nonlinear Independent Component Analysis for Continuous-Time Signals [85.59763606620938]
このプロセスの混合物の観察から多次元音源過程を復元する古典的問題を考察する。
このリカバリは、この混合物が十分に微分可能で可逆な関数によって与えられる場合、多くの一般的なプロセスのモデル(座標の順序と単調スケーリングまで)に対して可能であることを示す。
論文 参考訳(メタデータ) (2021-02-04T20:28:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。