論文の概要: Discovering stochastic dynamical equations from biological time series data
- arxiv url: http://arxiv.org/abs/2205.02645v6
- Date: Sun, 22 Sep 2024 11:03:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 15:46:48.504054
- Title: Discovering stochastic dynamical equations from biological time series data
- Title(参考訳): 生物学的時系列データから確率力学方程式を発見する
- Authors: Arshed Nabeel, Ashwin Karichannavar, Shuaib Palathingal, Jitesh Jhawar, David B. Brückner, Danny Raj M., Vishwesha Guttal,
- Abstract要約: 本稿では,変数の時系列データを入力とし,微分状態方程式を出力する方程式探索を提案する。
時系列データのみから,正しい方程式を復元し,その安定性を正確に推定できることを示す。
魚の学習と単細胞移動という2つの実世界のデータセット上で,本手法を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Theoretical studies have shown that stochasticity can affect the dynamics of ecosystems in counter-intuitive ways. However, without knowing the equations governing the dynamics of populations or ecosystems, it is difficult to ascertain the role of stochasticity in real datasets. Therefore, the inverse problem of inferring the governing stochastic equations from datasets is important. Here, we present an equation discovery methodology that takes time series data of state variables as input and outputs a stochastic differential equation. We achieve this by combining traditional approaches from stochastic calculus with the equation-discovery techniques. We demonstrate the generality of the method via several applications. First, we deliberately choose various stochastic models with fundamentally different governing equations; yet they produce nearly identical steady-state distributions. We show that we can recover the correct underlying equations, and thus infer the structure of their stability, accurately from the analysis of time series data alone. We demonstrate our method on two real-world datasets -- fish schooling and single-cell migration -- which have vastly different spatiotemporal scales and dynamics. We illustrate various limitations and potential pitfalls of the method and how to overcome them via diagnostic measures. Finally, we provide our open-source codes via a package named PyDaDDy (Python library for Data Driven Dynamics).
- Abstract(参考訳): 理論的研究により、確率性は反直観的な方法で生態系の力学に影響を与えることが示されている。
しかし、個体群や生態系の動態を規定する方程式を知らずに、実際のデータセットにおける確率性の役割を確かめることは困難である。
したがって、データセットから支配確率方程式を推定する逆問題は重要である。
本稿では,状態変数の時系列データを入力とし,確率微分方程式を出力する方程式探索手法を提案する。
確率計算からの従来のアプローチと方程式発見手法を組み合わせることでこれを実現できる。
いくつかの応用を通して,本手法の一般化を実証する。
まず、基本的に異なる支配方程式を持つ様々な確率モデルを意図的に選択するが、ほぼ同一の定常分布を生成する。
時系列データのみの解析から,正しい基礎となる方程式を復元し,その安定性を正確に推定できることが示される。
我々は,魚の学習と単一細胞移動という,時空間スケールとダイナミクスの異なる2つの実世界のデータセット上で,我々の手法を実証する。
本手法の様々な限界と潜在的な落とし穴と診断方法による克服方法について述べる。
最後に、PyDaDDy(Python Library for Data Driven Dynamics)というパッケージを通じて、オープンソースコードを提供しています。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - HyperSINDy: Deep Generative Modeling of Nonlinear Stochastic Governing
Equations [5.279268784803583]
本稿では,データからのスパース制御方程式の深部生成モデルを用いた動的モデリングフレームワークHyperSINDyを紹介する。
一度訓練すると、HyperSINDyは、係数が白色雑音によって駆動される微分方程式を介して力学を生成する。
実験では、HyperSINDyはデータと一致するように学習度をスケーリングすることで、基底的真理支配方程式を復元する。
論文 参考訳(メタデータ) (2023-10-07T14:41:59Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
D-CIPHERは人工物の測定に頑健であり、微分方程式の新しい、非常に一般的なクラスを発見できる。
さらに,D-CIPHERを効率的に探索するための新しい最適化手法であるCoLLieを設計する。
論文 参考訳(メタデータ) (2022-06-21T17:59:20Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Discovery of Nonlinear Dynamical Systems using a Runge-Kutta Inspired
Dictionary-based Sparse Regression Approach [9.36739413306697]
機械学習と辞書ベースの学習を数値解析ツールと組み合わせ,微分方程式の制御を探索する。
我々は、サンプリング体制を超えてよりよく一般化しやすい解釈可能で準同型モデルを得る。
生物ネットワークに通常現れる有理非線形性を含む支配方程式の拡張について論じる。
論文 参考訳(メタデータ) (2021-05-11T08:46:51Z) - Inference of Stochastic Dynamical Systems from Cross-Sectional
Population Data [8.905677748354364]
生物化学、疫学、金融数学、その他多くの科学分野において、個体群や時間経過データから力学系の駆動方程式を推測することは重要である。
本研究では, 微分方程式に基づいて, 人口の確率密度の進化を記述するフォッカー・プランク方程式を推定し, 計算的に推定する。
そして、USDLアプローチに従って、Fokker-Planck方程式を適切なテスト関数の集合に投影し、方程式の線形系に変換する。
論文 参考訳(メタデータ) (2020-12-09T14:02:29Z) - ImitationFlow: Learning Deep Stable Stochastic Dynamic Systems by
Normalizing Flows [29.310742141970394]
我々は,世界規模で安定な非線形力学を学習できる新しいDeep生成モデルであるImitationFlowを紹介した。
提案手法の有効性を,標準データセットと実ロボット実験の両方で示す。
論文 参考訳(メタデータ) (2020-10-25T14:49:46Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
与えられた観測データから数学的方程式を発見するアルゴリズムについて述べる。
このアルゴリズムは遺伝的プログラミングとスパース回帰を組み合わせたものである。
解析方程式の発見や偏微分方程式(PDE)の発見にも用いられる。
論文 参考訳(メタデータ) (2020-04-03T17:21:57Z) - Learning Stochastic Behaviour from Aggregate Data [52.012857267317784]
集約データから非線形ダイナミクスを学習することは、各個人の完全な軌道が利用できないため、難しい問題である。
本稿では,Fokker Planck Equation (FPE) の弱い形式を用いて,サンプル形式のデータの密度変化を記述する手法を提案する。
このようなサンプルベースのフレームワークでは、偏微分方程式(PDE)FPEを明示的に解くことなく、集約データから非線形ダイナミクスを学習することができる。
論文 参考訳(メタデータ) (2020-02-10T03:20:13Z) - Data-Driven Discovery of Coarse-Grained Equations [0.0]
マルチスケールモデリングとシミュレーションは、シミュレーションデータの学習がそのような発見につながる2つの分野である。
我々は、そのようなモデルの人間の発見を、2つのモードで実行できるスパース回帰に基づく機械学習戦略に置き換える。
一連の例は、方程式発見に対する我々のアプローチの正確性、堅牢性、限界を示している。
論文 参考訳(メタデータ) (2020-01-30T23:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。