Automatic detection and counting of retina cell nuclei using deep
learning
- URL: http://arxiv.org/abs/2002.03563v1
- Date: Mon, 10 Feb 2020 05:49:10 GMT
- Title: Automatic detection and counting of retina cell nuclei using deep
learning
- Authors: S. M. Hadi Hosseini, Hao Chen, Monica M. Jablonski
- Abstract summary: The ability to automatically detect, classify, calculate the size, number, and grade of retinal cells and other biological objects is critically important in eye disease like age-related macular degeneration (AMD)
In this paper, we developed an automated tool based on deep learning technique and Mask R-CNN model to analyze large datasets of transmission electron microscopy (TEM) images and quantify retinal cells with high speed and precision.
- Score: 5.4052819252055055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to automatically detect, classify, calculate the size, number,
and grade of retinal cells and other biological objects is critically important
in eye disease like age-related macular degeneration (AMD). In this paper, we
developed an automated tool based on deep learning technique and Mask R-CNN
model to analyze large datasets of transmission electron microscopy (TEM)
images and quantify retinal cells with high speed and precision. We considered
three categories for outer nuclear layer (ONL) cells: live, intermediate, and
pyknotic. We trained the model using a dataset of 24 samples. We then optimized
the hyper-parameters using another set of 6 samples. The results of this
research, after applying to the test datasets, demonstrated that our method is
highly accurate for automatically detecting, categorizing, and counting cell
nuclei in the ONL of the retina. Performance of our model was tested using
general metrics: general mean average precision (mAP) for detection; and
precision, recall, F1-score, and accuracy for categorizing and counting.
Related papers
- The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - CellCentroidFormer: Combining Self-attention and Convolution for Cell
Detection [4.555723508665994]
We propose a novel hybrid CNN-ViT model for cell detection in microscopy images.
Our centroid-based cell detection method represents cells as ellipses and is end-to-end trainable.
arXiv Detail & Related papers (2022-06-01T09:04:39Z) - Machine learning based lens-free imaging technique for field-portable
cytometry [0.0]
The performance of our proposed method shows an increase in accuracy >98% along with the signal enhancement of >5 dB for most of the cell types.
The model is adaptive to learn new type of samples within a few learning iterations and able to successfully classify the newly introduced sample.
arXiv Detail & Related papers (2022-03-02T07:09:29Z) - Deep CNNs for Peripheral Blood Cell Classification [0.0]
We benchmark 27 popular deep convolutional neural network architectures on the microscopic peripheral blood cell images dataset.
We fine-tune the state-of-the-art image classification models pre-trained on the ImageNet dataset for blood cell classification.
arXiv Detail & Related papers (2021-10-18T17:56:07Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
Medulloblastoma is the most common malignant brain cancer among children.
CNN has shown promising results for MB subtype classification.
We study the impact of tile size and input strategy.
arXiv Detail & Related papers (2021-09-14T09:42:37Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - A fully automated end-to-end process for fluorescence microscopy images
of yeast cells: From segmentation to detection and classification [0.0]
We build an end-to-end process to automatically segment, detect and classify cell compartments of fluorescence microscopy images of yeast cells.
This fully automated process is intended to be integrated into an interactive e-Science server in the PerICo1 project.
Although the application domain is optical microscopy in yeast cells, the method is also applicable to multiple-cell images in medical applications.
arXiv Detail & Related papers (2021-04-06T21:24:50Z) - A Multi-Scale Conditional Deep Model for Tumor Cell Ratio Counting [4.164451715899639]
We propose a method to accurately obtain the ratio of tumor cells over an entire histological slide.
We use deep fully convolutional neural network models trained to detect and classify cells on images of H&E-stained tissue sections.
We show that combining two models, each working at a different magnification allows the system to capture both cell-level details and surrounding context.
arXiv Detail & Related papers (2021-01-27T22:40:33Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
We classify biomedical images using ensembles of neural networks.
We select our activations among the following ones: ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign.
arXiv Detail & Related papers (2020-11-24T01:53:39Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.