論文の概要: Planning Robot Placement for Object Grasping
- arxiv url: http://arxiv.org/abs/2405.16692v1
- Date: Sun, 26 May 2024 20:57:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 19:48:31.485295
- Title: Planning Robot Placement for Object Grasping
- Title(参考訳): 物体移植のための計画ロボット配置
- Authors: Manish Saini, Melvin Paul Jacob, Minh Nguyen, Nico Hochgeschwender,
- Abstract要約: 物体の摘み取りなどの操作に基づく活動を行う場合、移動ロボットは、実行を成功させる位置で基地を位置決めする必要がある。
この問題に対処するために、顕著なアプローチは、通常、対象のオブジェクトに対する把握ポーズを提供するために、プランナーを高価に把握することに依存する。
そこで我々は,まず環境との衝突を起こさないロボット配置を見つけ,次に最適な配置候補を見出すよう評価する。
- 参考スコア(独自算出の注目度): 5.327052729563043
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: When performing manipulation-based activities such as picking objects, a mobile robot needs to position its base at a location that supports successful execution. To address this problem, prominent approaches typically rely on costly grasp planners to provide grasp poses for a target object, which are then are then analysed to identify the best robot placements for achieving each grasp pose. In this paper, we propose instead to first find robot placements that would not result in collision with the environment and from where picking up the object is feasible, then evaluate them to find the best placement candidate. Our approach takes into account the robot's reachability, as well as RGB-D images and occupancy grid maps of the environment for identifying suitable robot poses. The proposed algorithm is embedded in a service robotic workflow, in which a person points to select the target object for grasping. We evaluate our approach with a series of grasping experiments, against an existing baseline implementation that sends the robot to a fixed navigation goal. The experimental results show how the approach allows the robot to grasp the target object from locations that are very challenging to the baseline implementation.
- Abstract(参考訳): 物体の摘み取りなどの操作に基づく活動を行う場合、移動ロボットは、実行を成功させる位置で基地を位置決めする必要がある。
この問題に対処するために、著名なアプローチは、通常、対象物に対してグリップポーズを提供するために、プランナーにコストのかかるグリップを頼り、その後分析して、各グリップポーズを達成するのに最適なロボット配置を特定する。
そこで本論文では,まず,環境との衝突を招かないロボット配置と,物体を拾い上げる場所を推定し,最適な配置候補を求めることを提案する。
提案手法では,ロボットの到達性,RGB-D画像および環境の占有グリッドマップを考慮し,適切なロボットのポーズを特定する。
提案アルゴリズムはサービスロボットワークフローに組み込まれており,対象物を選択して把握する。
我々は,ロボットを一定の航法目標に投入する既存のベースライン実装に対して,一連の把握実験でアプローチを評価した。
実験結果は,ロボットがベースライン実装において非常に困難な位置から対象物を把握できることを示す。
関連論文リスト
- Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
微分可能シミュレーションは、システム識別の強力なツールとなっている。
本手法は,オブジェクト自体のデータに頼ることなく,ロボットからの情報を用いてオブジェクト特性を校正する。
低コストなロボットプラットフォームにおける本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-04T20:48:38Z) - Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
我々は、ゼロショットロボット操作を可能にする汎用的な目標条件ポリシーを学習することを目指している。
私たちのフレームワークであるTrack2Actは、ゴールに基づいて将来のタイムステップで画像内のポイントがどのように動くかを予測する。
学習したトラック予測を残留ポリシーと組み合わせることで,多種多様な汎用ロボット操作が可能となることを示す。
論文 参考訳(メタデータ) (2024-05-02T17:56:55Z) - Active Exploration for Robotic Manipulation [40.39182660794481]
本稿では,スパース・リワード型ロボット操作作業における効率的な学習を可能にするモデルに基づく能動探索手法を提案する。
我々は,提案アルゴリズムをシミュレーションおよび実ロボットで評価し,スクラッチから本手法を訓練した。
論文 参考訳(メタデータ) (2022-10-23T18:07:51Z) - Can Foundation Models Perform Zero-Shot Task Specification For Robot
Manipulation? [54.442692221567796]
タスク仕様は、熟練していないエンドユーザの関与とパーソナライズされたロボットの採用に不可欠である。
タスク仕様に対する広く研究されているアプローチは、目標を通じて、コンパクトな状態ベクトルまたは同じロボットシーンのゴールイメージを使用することである。
そこで本研究では,人間の指定や使用が容易な目標仕様の代替的,より汎用的な形式について検討する。
論文 参考訳(メタデータ) (2022-04-23T19:39:49Z) - Object Manipulation via Visual Target Localization [64.05939029132394]
オブジェクトを操作するための訓練エージェントは、多くの課題を提起します。
本研究では,対象物体を探索する環境を探索し,位置が特定されると3次元座標を計算し,対象物が見えない場合でも3次元位置を推定する手法を提案する。
評価の結果,同じ感覚スイートにアクセス可能なモデルに比べて,成功率が3倍に向上したことが示された。
論文 参考訳(メタデータ) (2022-03-15T17:59:01Z) - Reasoning with Scene Graphs for Robot Planning under Partial
Observability [7.121002367542985]
我々は,ロボットが視覚的文脈情報で推論できるロボット計画のためのシーン解析アルゴリズムを開発した。
シミュレーションで複数の3D環境と実際のロボットが収集したデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2022-02-21T18:45:56Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
強化学習手法は、重要な性能を達成できるが、同じロボットプラットフォームで収集される大量のトレーニングデータを必要とする。
私たちはそれを、さまざまなロボットプラットフォームで共有される共通の構造を捉えるモデルを見つけることを目標とする、数ショットのメタラーニング問題として定式化します。
我々は,400個のロボットを用いて,実ロボットピッキング作業とシミュレーションリーチの枠組みを実験的に評価した。
論文 参考訳(メタデータ) (2021-03-05T14:16:20Z) - Object Detection and Pose Estimation from RGB and Depth Data for
Real-time, Adaptive Robotic Grasping [0.0]
動的ロボットの把握を目的として,リアルタイム物体検出とポーズ推定を行うシステムを提案する。
提案されたアプローチは、ロボットが物体のアイデンティティとその実際のポーズを検出し、新しいポーズで使用するために正準の把握を適応させることを可能にする。
訓練のためのシステムは、ロボットの手首に取り付けられたグリッパーに対する対象の相対的な姿勢を捉えることで、標準的な把握を定義する。
テスト中、新しいポーズが検出されると、物体の正準的な把握が識別され、ロボットアームの関節角度を調整して動的に適応されます。
論文 参考訳(メタデータ) (2021-01-18T22:22:47Z) - Projection Mapping Implementation: Enabling Direct Externalization of
Perception Results and Action Intent to Improve Robot Explainability [62.03014078810652]
既存の非言語的手がかり、例えば目視や腕の動きに関する研究は、ロボットの内部状態を正確に示さないかもしれない。
状態をロボットの動作環境に直接投影することは、直接的で正確でより健全であるという利点がある。
論文 参考訳(メタデータ) (2020-10-05T18:16:20Z) - Human-like Planning for Reaching in Cluttered Environments [11.55532557594561]
人間は、散らかった環境でオブジェクトに手を伸ばすのに驚くほど適しています。
我々は、人間の高度な操作計画を特定し、これらのスキルをロボットプランナーに転送する。
人間のようなプランナーは、最先端の標準軌道最適化アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-02-28T14:28:50Z) - Autonomous Planning Based on Spatial Concepts to Tidy Up Home
Environments with Service Robots [5.739787445246959]
本研究では,確率的生成モデルのパラメータを学習することにより,対象物の順序や位置を効率的に推定できる新しい計画法を提案する。
このモデルにより、ロボットは、Tidied環境で収集されたマルチモーダルセンサ情報を用いて、オブジェクトと場所の共起確率の分布を学習することができる。
我々は,世界ロボットサミット2018国際ロボティクスコンペティションのTidy Up Hereタスクの条件を再現する実験シミュレーションにより,提案手法の有効性を評価する。
論文 参考訳(メタデータ) (2020-02-10T11:49:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。