論文の概要: Fabricated Pictures Detection with Graph Matching
- arxiv url: http://arxiv.org/abs/2002.03720v1
- Date: Thu, 16 Jan 2020 12:29:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 00:46:57.914700
- Title: Fabricated Pictures Detection with Graph Matching
- Title(参考訳): グラフマッチングによる加工画像の検出
- Authors: Binrui Shen, Qiang Niu and Shengxin Zhu
- Abstract要約: 研究作業における実験画像の作成は、重大な学術的不正行為である。
グラフマッチング技術を用いて、類似した、あるいは、おそらく製造された画像を検出するためのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.36832029288386137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fabricating experimental pictures in research work is a serious academic
misconduct, which should better be detected in the reviewing process. However,
due to large number of submissions, the detection whether a picture is
fabricated or reused is laborious for reviewers, and sometimes is indistinct
with human eyes. A tool for detecting similarity between images may help to
alleviate this problem. Some methods based on local feature points matching
work for most of the time, while these methods may result in mess of matchings
due to ignorance of global relationship between features. We present a
framework to detect similar, or perhaps fabricated, pictures with the graph
matching techniques. A new iterative method is proposed, and experiments show
that such a graph matching technique is better than the methods based only on
local features for some cases.
- Abstract(参考訳): 研究作業における実験画像の作成は重大な学術的不正行為であり、レビュープロセスで検出すべきである。
しかし、投稿が多いため、画像が作成・再利用されるかどうかの検知は、レビュアーにとって手間がかかり、時には人間の目には見当たらないことがある。
画像間の類似性を検出するツールは、この問題を軽減するのに役立つかもしれない。
局所的な特徴点マッチングに基づくいくつかの手法は、ほとんどの場合、機能間のグローバルな関係の無知により、マッチングが混乱する可能性がある。
グラフマッチング技術を用いて、類似した、あるいは、おそらく製造された画像を検出するためのフレームワークを提案する。
新しい反復法が提案され,そのようなグラフマッチング手法が局所的な特徴のみに基づく手法よりも優れていることを示す実験結果が得られた。
関連論文リスト
- Detecting Generated Images by Real Images Only [64.12501227493765]
既存の画像検出手法は、生成画像中の視覚的アーティファクトを検出したり、大規模なトレーニングによって、実画像と生成画像の両方から識別的特徴を学習する。
本稿では,新たな視点から生成した画像検出問題にアプローチする。
実画像の共通性を見つけ、特徴空間内の密接な部分空間にマッピングすることで、生成した画像は生成モデルに関係なくサブ空間の外側に投影される。
論文 参考訳(メタデータ) (2023-11-02T03:09:37Z) - Multi-level Cross-modal Feature Alignment via Contrastive Learning
towards Zero-shot Classification of Remote Sensing Image Scenes [7.17717863134783]
ゼロショット画像シーンの分類に対処するクロスモーダル特徴アライメント手法が提案されている。
リモートセンシング画像シーンのゼロショット分類のためのコントラスト学習によるマルチレベルクロスモーダル特徴アライメント手法を提案する。
提案手法は,ゼロショットリモートセンシング画像シーン分類のための技術手法の状況より優れている。
論文 参考訳(メタデータ) (2023-05-31T10:00:45Z) - Feature-based Image Matching for Identifying Individual K\=ak\=a [0.0]
本報告では、個々のk=ak=aを識別する新しい用途のための教師なし特徴ベース画像マッチングパイプラインについて検討する。
クラスタリングに類似性ネットワークを適用することで、個々の鳥を識別する現在の教師付きアプローチの弱点に対処する。
機能ベースの画像マッチングは、既存の教師付きアプローチに代わる実行可能な代替手段を提供するために、類似性ネットワークで使用できると結論付けている。
論文 参考訳(メタデータ) (2023-01-17T03:43:19Z) - Learning to Detect Good Keypoints to Match Non-Rigid Objects in RGB
Images [7.428474910083337]
本稿では,非剛性画像対応タスクの正マッチ数を最大化するために,新しい学習キーポイント検出手法を提案する。
我々のトレーニングフレームワークは、アノテートされた画像対と予め定義された記述子抽出器をマッチングして得られる真の対応を利用して、畳み込みニューラルネットワーク(CNN)を訓練する。
実験の結果,本手法は平均整合精度で20時までに非剛体物体の実像に対して,最先端のキーポイント検出器よりも優れていた。
論文 参考訳(メタデータ) (2022-12-13T11:59:09Z) - Shrinking the Semantic Gap: Spatial Pooling of Local Moment Invariants
for Copy-Move Forgery Detection [7.460203098159187]
Copy-move forgeryは、特定のパッチをコピー&ペーストして画像に貼り付ける操作で、潜在的に違法または非倫理的使用がある。
コピー・ムーブ・フォージェリーの法医学的手法の進歩は,検出精度とロバスト性の向上に寄与している。
自己相似性が高い画像や強い信号の破損のある画像の場合、既存のアルゴリズムはしばしば非効率なプロセスと信頼性の低い結果を示す。
論文 参考訳(メタデータ) (2022-07-19T09:11:43Z) - Content-Based Detection of Temporal Metadata Manipulation [91.34308819261905]
画像の撮像時間とその内容と地理的位置とが一致しているかどうかを検証するためのエンドツーエンドのアプローチを提案する。
中心となる考え方は、画像の内容、キャプチャ時間、地理的位置が一致する確率を予測するための教師付き一貫性検証の利用である。
我々のアプローチは、大規模なベンチマークデータセットの以前の作業により改善され、分類精度が59.03%から81.07%に向上した。
論文 参考訳(メタデータ) (2021-03-08T13:16:19Z) - DetCo: Unsupervised Contrastive Learning for Object Detection [64.22416613061888]
教師なしのコントラスト学習は,CNNを用いた画像表現学習において大きな成功を収めている。
我々は,グローバルイメージとローカルイメージパッチのコントラストをフルに検討する,DetCoという新しいコントラスト学習手法を提案する。
DetCoは1倍のスケジュールでMask RCNN-C4/FPN/RetinaNet上で1.6/1.2/1.0 APで教師付き手法を一貫して上回っている。
論文 参考訳(メタデータ) (2021-02-09T12:47:20Z) - An Image Analogies Approach for Multi-Scale Contour Detection [4.974890682815778]
クエリ画像の輪郭を参照(例:アナログ)に対して行うのと同じ方法で検出する新しい方法を提案する。
数学的な研究から導かれた14個のステレオパッチは、光条件とは無関係に輪郭を異なるスケールで見つけるために用いられる知識である。
論文 参考訳(メタデータ) (2020-07-21T19:14:18Z) - Geometrically Mappable Image Features [85.81073893916414]
地図内のエージェントの視覚に基づくローカライゼーションは、ロボット工学とコンピュータビジョンにおいて重要な問題である。
本稿では,画像検索を対象とした画像特徴学習手法を提案する。
論文 参考訳(メタデータ) (2020-03-21T15:36:38Z) - Image Matching across Wide Baselines: From Paper to Practice [80.9424750998559]
局所的な特徴とロバストな推定アルゴリズムの包括的なベンチマークを導入する。
パイプラインのモジュール構造は、さまざまなメソッドの容易な統合、構成、組み合わせを可能にします。
適切な設定で、古典的な解決策は依然として芸術の知覚された状態を上回る可能性があることを示す。
論文 参考訳(メタデータ) (2020-03-03T15:20:57Z) - Learning to Compare Relation: Semantic Alignment for Few-Shot Learning [48.463122399494175]
本稿では,コンテンツアライメントに頑健な関係を比較するための新しいセマンティックアライメントモデルを提案する。
数ショットの学習データセットについて広範な実験を行う。
論文 参考訳(メタデータ) (2020-02-29T08:37:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。