Accelerating Object Detection with YOLOv4 for Real-Time Applications
- URL: http://arxiv.org/abs/2410.16320v1
- Date: Thu, 17 Oct 2024 17:44:57 GMT
- Title: Accelerating Object Detection with YOLOv4 for Real-Time Applications
- Authors: K. Senthil Kumar, K. M. B. Abdullah Safwan,
- Abstract summary: Convolutional Neural Network (CNN) have emerged as a powerful tool for recognizing image content and in computer vision approach for most problems.
This paper introduces the brief introduction of deep learning and object detection framework like Convolutional Neural Network(CNN)
- Score: 0.276240219662896
- License:
- Abstract: Object Detection is related to Computer Vision. Object detection enables detecting instances of objects in images and videos. Due to its increased utilization in surveillance, tracking system used in security and many others applications have propelled researchers to continuously derive more efficient and competitive algorithms. However, problems emerges while implementing it in real-time because of their dynamic environment and complex algorithms used in object detection. In the last few years, Convolution Neural Network (CNN) have emerged as a powerful tool for recognizing image content and in computer vision approach for most problems. In this paper, We revived begins the brief introduction of deep learning and object detection framework like Convolutional Neural Network(CNN), You only look once - version 4 (YOLOv4). Then we focus on our proposed object detection architectures along with some modifications. The traditional model detects a small object in images. We have some modifications to the model. Our proposed method gives the correct result with accuracy.
Related papers
- SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
We propose a saliency-based OD algorithm (SalienDet) to detect unknown objects.
Our SalienDet utilizes a saliency-based algorithm to enhance image features for object proposal generation.
We design a dataset relabeling approach to differentiate the unknown objects from all objects in training sample set to achieve Open-World Detection.
arXiv Detail & Related papers (2023-05-11T16:19:44Z) - Fast and Accurate Object Detection on Asymmetrical Receptive Field [0.0]
This article proposes methods for improving object detection accuracy from the perspective of changing receptive fields.
The structure of the head part of YOLOv5 is modified by adding asymmetrical pooling layers.
The performances of the new model in this article are compared with original YOLOv5 model and analyzed from several parameters.
arXiv Detail & Related papers (2023-03-15T23:59:18Z) - Object Recognition in Different Lighting Conditions at Various Angles by
Deep Learning Method [0.0]
Existing computer vision and object detection methods rely on neural networks and deep learning.
This article aims to classify the name of the various object based on the position of an object's detected box.
We find that this model's accuracy through recognition is mainly influenced by the proportion of objects and the number of samples.
arXiv Detail & Related papers (2022-10-18T06:23:26Z) - Object Detection in Aerial Images with Uncertainty-Aware Graph Network [61.02591506040606]
We propose a novel uncertainty-aware object detection framework with a structured-graph, where nodes and edges are denoted by objects.
We refer to our model as Uncertainty-Aware Graph network for object DETection (UAGDet)
arXiv Detail & Related papers (2022-08-23T07:29:03Z) - Hybrid Optimized Deep Convolution Neural Network based Learning Model
for Object Detection [0.0]
Object identification is one of the most fundamental and difficult issues in computer vision.
In recent years, deep learning-based object detection techniques have grabbed the public's interest.
In this study, a unique deep learning classification technique is used to create an autonomous object detecting system.
The suggested framework has a detection accuracy of 0.9864, which is greater than current techniques.
arXiv Detail & Related papers (2022-03-02T04:39:37Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-net is a new low-computation two-stage object detection architecture.
It reduces computations by separating objects from background using a very lite first-stage.
Resulting image proposals are then processed in the second-stage by a highly accurate model.
arXiv Detail & Related papers (2021-07-21T12:39:51Z) - Improved detection of small objects in road network sequences [0.0]
We propose a new procedure for detecting small-scale objects by applying super-resolution processes based on detections performed by convolutional neural networks.
This work has been tested for a set of traffic images containing elements of different scales to test the efficiency according to the detections obtained by the model.
arXiv Detail & Related papers (2021-05-18T10:13:23Z) - Few-Shot Learning for Video Object Detection in a Transfer-Learning
Scheme [70.45901040613015]
We study the new problem of few-shot learning for video object detection.
We employ a transfer-learning framework to effectively train the video object detector on a large number of base-class objects and a few video clips of novel-class objects.
arXiv Detail & Related papers (2021-03-26T20:37:55Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z) - Real-Time Object Detection and Recognition on Low-Compute Humanoid
Robots using Deep Learning [0.12599533416395764]
We describe a novel architecture that enables multiple low-compute NAO robots to perform real-time detection, recognition and localization of objects in its camera view.
The proposed algorithm for object detection and localization is an empirical modification of YOLOv3, based on indoor experiments in multiple scenarios.
The architecture also comprises of an effective end-to-end pipeline to feed the real-time frames from the camera feed to the neural net and use its results for guiding the robot.
arXiv Detail & Related papers (2020-01-20T05:24:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.