Object Recognition in Different Lighting Conditions at Various Angles by
Deep Learning Method
- URL: http://arxiv.org/abs/2210.09618v1
- Date: Tue, 18 Oct 2022 06:23:26 GMT
- Title: Object Recognition in Different Lighting Conditions at Various Angles by
Deep Learning Method
- Authors: Imran Khan Mirani, Chen Tianhua, Malak Abid Ali Khan, Syed Muhammad
Aamir, Waseef Menhaj
- Abstract summary: Existing computer vision and object detection methods rely on neural networks and deep learning.
This article aims to classify the name of the various object based on the position of an object's detected box.
We find that this model's accuracy through recognition is mainly influenced by the proportion of objects and the number of samples.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Existing computer vision and object detection methods strongly rely on neural
networks and deep learning. This active research area is used for applications
such as autonomous driving, aerial photography, protection, and monitoring.
Futuristic object detection methods rely on rectangular, boundary boxes drawn
over an object to accurately locate its location. The modern object recognition
algorithms, however, are vulnerable to multiple factors, such as illumination,
occlusion, viewing angle, or camera rotation as well as cost. Therefore, deep
learning-based object recognition will significantly increase the recognition
speed and compatible external interference. In this study, we use convolutional
neural networks (CNN) to recognize items, the neural networks have the
advantages of end-to-end, sparse relation, and sharing weights. This article
aims to classify the name of the various object based on the position of an
object's detected box. Instead, under different distances, we can get
recognition results with different confidence. Through this study, we find that
this model's accuracy through recognition is mainly influenced by the
proportion of objects and the number of samples. When we have a small
proportion of an object on camera, then we get higher recognition accuracy; if
we have a much small number of samples, we can get greater accuracy in
recognition. The epidemic has a great impact on the world economy where
designing a cheaper object recognition system is the need of time.
Related papers
- Accelerating Object Detection with YOLOv4 for Real-Time Applications [0.276240219662896]
Convolutional Neural Network (CNN) have emerged as a powerful tool for recognizing image content and in computer vision approach for most problems.
This paper introduces the brief introduction of deep learning and object detection framework like Convolutional Neural Network(CNN)
arXiv Detail & Related papers (2024-10-17T17:44:57Z) - Detecting Out-of-distribution Objects Using Neuron Activation Patterns [0.0]
We introduce Neuron Activation PaTteRns for out-of-distribution samples detection in Object detectioN (NAPTRON)
Our approach outperforms state-of-the-art methods, without the need to affect in-distribution (ID) performance.
We have created the largest open-source benchmark for OOD object detection.
arXiv Detail & Related papers (2023-07-31T06:41:26Z) - Fast and Accurate Object Detection on Asymmetrical Receptive Field [0.0]
This article proposes methods for improving object detection accuracy from the perspective of changing receptive fields.
The structure of the head part of YOLOv5 is modified by adding asymmetrical pooling layers.
The performances of the new model in this article are compared with original YOLOv5 model and analyzed from several parameters.
arXiv Detail & Related papers (2023-03-15T23:59:18Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Hybrid Optimized Deep Convolution Neural Network based Learning Model
for Object Detection [0.0]
Object identification is one of the most fundamental and difficult issues in computer vision.
In recent years, deep learning-based object detection techniques have grabbed the public's interest.
In this study, a unique deep learning classification technique is used to create an autonomous object detecting system.
The suggested framework has a detection accuracy of 0.9864, which is greater than current techniques.
arXiv Detail & Related papers (2022-03-02T04:39:37Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
We compare the error statistics of the class embeddings learned from a one-hot approach with semantically structured embeddings from natural language processing or knowledge graphs.
We propose a knowledge-embedded design for keypoint-based and transformer-based object detection architectures.
arXiv Detail & Related papers (2021-12-21T17:10:21Z) - Analysis of voxel-based 3D object detection methods efficiency for
real-time embedded systems [93.73198973454944]
Two popular voxel-based 3D object detection methods are studied in this paper.
Our experiments show that these methods mostly fail to detect distant small objects due to the sparsity of the input point clouds at large distances.
Our findings suggest that a considerable part of the computations of existing methods is focused on locations of the scene that do not contribute with successful detection.
arXiv Detail & Related papers (2021-05-21T12:40:59Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
We propose a new framework called Ventral-Dorsal Networks (VDNets)
Inspired by the structure of the human visual system, we propose the integration of a "Ventral Network" and a "Dorsal Network"
Our experimental results reveal that the proposed method outperforms state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-15T23:57:36Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z) - Real-Time Object Detection and Recognition on Low-Compute Humanoid
Robots using Deep Learning [0.12599533416395764]
We describe a novel architecture that enables multiple low-compute NAO robots to perform real-time detection, recognition and localization of objects in its camera view.
The proposed algorithm for object detection and localization is an empirical modification of YOLOv3, based on indoor experiments in multiple scenarios.
The architecture also comprises of an effective end-to-end pipeline to feed the real-time frames from the camera feed to the neural net and use its results for guiding the robot.
arXiv Detail & Related papers (2020-01-20T05:24:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.