論文の概要: Time Series Alignment with Global Invariances
- arxiv url: http://arxiv.org/abs/2002.03848v2
- Date: Tue, 1 Nov 2022 13:27:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 07:50:08.169980
- Title: Time Series Alignment with Global Invariances
- Title(参考訳): 大域的不変性を伴う時系列アライメント
- Authors: Titouan Vayer and Romain Tavenard and Laetitia Chapel and Nicolas
Courty and R\'emi Flamary and Yann Soullard
- Abstract要約: 本稿では,時間的アライメントとともに特徴空間の潜在的大域的変換を学習することにより,特徴空間と時間的変動の両方を考慮した新しい距離を提案する。
この新たな幾何学の下で,時系列バリセンタの計算アルゴリズムを2つ提案する。
シミュレーションデータと実世界のデータの両方に対するアプローチの関心を概説し、最先端の手法と比較して、我々のアプローチの堅牢性を示す。
- 参考スコア(独自算出の注目度): 14.632733235929926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate time series are ubiquitous objects in signal processing.
Measuring a distance or similarity between two such objects is of prime
interest in a variety of applications, including machine learning, but can be
very difficult as soon as the temporal dynamics and the representation of the
time series, {\em i.e.} the nature of the observed quantities, differ from one
another. In this work, we propose a novel distance accounting both feature
space and temporal variabilities by learning a latent global transformation of
the feature space together with a temporal alignment, cast as a joint
optimization problem. The versatility of our framework allows for several
variants depending on the invariance class at stake. Among other contributions,
we define a differentiable loss for time series and present two algorithms for
the computation of time series barycenters under this new geometry. We
illustrate the interest of our approach on both simulated and real world data
and show the robustness of our approach compared to state-of-the-art methods.
- Abstract(参考訳): 多変量時系列は信号処理におけるユビキタスオブジェクトである。
このような2つのオブジェクト間の距離や類似性を測定することは、機械学習を含む様々なアプリケーションで主要な関心事であるが、時間的ダイナミクスと時系列の表現、すなわち観測される量の性質が互いに異なる場合、すぐに非常に困難になる可能性がある。
本研究では,特徴空間の潜在的大域的変換と時間的アライメントを併用して学習することにより,特徴空間と時間的変動を両立させる新しい距離を共同最適化問題として提案する。
我々のフレームワークの汎用性は、関連する不変クラスに依存するいくつかの変種を可能にする。
その他の貢献として, 時系列の微分可能損失を定義し, この新しい幾何学の下での時系列重心計算のための2つのアルゴリズムを提案する。
シミュレーションデータと実世界のデータの両方にアプローチの関心を示し、最先端の手法と比較して、我々のアプローチの堅牢性を示す。
関連論文リスト
- Leveraging 2D Information for Long-term Time Series Forecasting with Vanilla Transformers [55.475142494272724]
時系列予測は、様々な領域における複雑な力学の理解と予測に不可欠である。
GridTSTは、革新的な多方向性の注意を用いた2つのアプローチの利点を組み合わせたモデルである。
このモデルは、さまざまな現実世界のデータセットに対して、常に最先端のパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-05-22T16:41:21Z) - EdgeConvFormer: Dynamic Graph CNN and Transformer based Anomaly
Detection in Multivariate Time Series [7.514010315664322]
本研究では,階層化されたTime2vec埋め込み,動的グラフCNN,Transformerを統合し,グローバルかつ局所的な空間時間情報を抽出する新たな異常検出手法EdgeConvFormerを提案する。
実験により、EdgeConvFormerは、多変量時系列データから時空間モデリングを学習し、異なるスケールの多くの実世界のデータセットに対する最先端のアプローチよりも優れた異常検出性能を得ることができることが示された。
論文 参考訳(メタデータ) (2023-12-04T08:38:54Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
本研究では,各サンプルに対して総合的な時間的相互作用特徴学習を実現するためのトランスフォーマーベースのエンコーダを提案する。
実世界の3つのデータセットについて広範な実験を行い、提案したCoFormerが既存の手法を大幅に上回っていることを検証した。
論文 参考訳(メタデータ) (2023-10-17T06:29:09Z) - UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series
Forecasting [59.11817101030137]
この研究はドメイン境界を超越する統一モデルパラダイムを提唱する。
効果的なクロスドメインモデルを学ぶことは、以下の課題を提示します。
効果的なドメイン間時系列学習のためのUniTimeを提案する。
論文 参考訳(メタデータ) (2023-10-15T06:30:22Z) - Diffeomorphic Transformations for Time Series Analysis: An Efficient
Approach to Nonlinear Warping [0.0]
多くの分野にわたる時間データの拡散と普遍性は、類似性、分類、クラスタリング手法への関心を喚起した。
ユークリッドのような伝統的な距離測度は、時間に依存したデータの性質のため適していない。
この論文は、パラメトリックおよび微分同相のワープ変換を用いる新しい弾性アライメント法を提案する。
論文 参考訳(メタデータ) (2023-09-25T10:51:47Z) - Kernel-based Joint Independence Tests for Multivariate Stationary and
Non-stationary Time Series [0.6749750044497732]
多変量時系列における共同独立のカーネルベース統計テストを導入する。
提案手法は, 合成例において, 高次依存関係を頑健に発見する方法を示す。
我々の手法はデータの高次相互作用を明らかにするのに役立つ。
論文 参考訳(メタデータ) (2023-05-15T10:38:24Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
データ固有のリード-ラグ関係を発見することで、重要な洞察を得ることができる。
階層化多要素モデルにおけるリードラグ関係のロバスト検出のためのクラスタリング駆動手法を開発した。
論文 参考訳(メタデータ) (2023-05-11T10:30:35Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Instance-wise Graph-based Framework for Multivariate Time Series
Forecasting [69.38716332931986]
我々は,異なる時刻スタンプにおける変数の相互依存性を利用するための,シンプルで効率的なインスタンス単位のグラフベースのフレームワークを提案する。
私たちのフレームワークのキーとなる考え方は、異なる変数の履歴時系列から予測すべき現在の時系列に情報を集約することです。
論文 参考訳(メタデータ) (2021-09-14T07:38:35Z) - DYNOTEARS: Structure Learning from Time-Series Data [6.7638850283606855]
時系列における変数間の同時(イントラスライス)と時間差(インタースライス)を同時に推定する手法を提案する。
動的ベイズネットワークを学習するための最先端の手法と比較して,本手法は実データに対してスケーラブルかつ正確である。
論文 参考訳(メタデータ) (2020-02-02T21:47:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。