論文の概要: Diffeomorphic Transformations for Time Series Analysis: An Efficient
Approach to Nonlinear Warping
- arxiv url: http://arxiv.org/abs/2309.14029v1
- Date: Mon, 25 Sep 2023 10:51:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 16:00:52.000093
- Title: Diffeomorphic Transformations for Time Series Analysis: An Efficient
Approach to Nonlinear Warping
- Title(参考訳): 時系列解析のための微分型変換:非線形ワープへの効率的なアプローチ
- Authors: I\~nigo Martinez
- Abstract要約: 多くの分野にわたる時間データの拡散と普遍性は、類似性、分類、クラスタリング手法への関心を喚起した。
ユークリッドのような伝統的な距離測度は、時間に依存したデータの性質のため適していない。
この論文は、パラメトリックおよび微分同相のワープ変換を用いる新しい弾性アライメント法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation and ubiquity of temporal data across many disciplines has
sparked interest for similarity, classification and clustering methods
specifically designed to handle time series data. A core issue when dealing
with time series is determining their pairwise similarity, i.e., the degree to
which a given time series resembles another. Traditional distance measures such
as the Euclidean are not well-suited due to the time-dependent nature of the
data. Elastic metrics such as dynamic time warping (DTW) offer a promising
approach, but are limited by their computational complexity,
non-differentiability and sensitivity to noise and outliers. This thesis
proposes novel elastic alignment methods that use parametric \& diffeomorphic
warping transformations as a means of overcoming the shortcomings of DTW-based
metrics. The proposed method is differentiable \& invertible, well-suited for
deep learning architectures, robust to noise and outliers, computationally
efficient, and is expressive and flexible enough to capture complex patterns.
Furthermore, a closed-form solution was developed for the gradient of these
diffeomorphic transformations, which allows an efficient search in the
parameter space, leading to better solutions at convergence. Leveraging the
benefits of these closed-form diffeomorphic transformations, this thesis
proposes a suite of advancements that include: (a) an enhanced temporal
transformer network for time series alignment and averaging, (b) a
deep-learning based time series classification model to simultaneously align
and classify signals with high accuracy, (c) an incremental time series
clustering algorithm that is warping-invariant, scalable and can operate under
limited computational and time resources, and finally, (d) a normalizing flow
model that enhances the flexibility of affine transformations in coupling and
autoregressive layers.
- Abstract(参考訳): 多くの分野にまたがる時間データの増殖と普及は、時系列データを扱うために特別に設計された類似性、分類、クラスタリングの方法への関心を喚起した。
時系列を扱う際の中核的な問題は、そのペアワイドな類似性、すなわちある時系列が他の時系列に類似する程度を決定することである。
ユークリッドのような伝統的な距離測度は、時間に依存したデータの性質のため適していない。
dynamic time warping(dtw)のような弾力性のあるメトリクスは有望なアプローチだが、計算の複雑さ、非微分可能性、ノイズや異常値に対する感度によって制限される。
この論文は、DTWベースのメトリクスの欠点を克服する手段として、パラメトリック \&微分型ワープ変換を用いる新しい弾性アライメント手法を提案する。
提案手法は微分可能で可逆性があり、ディープラーニングアーキテクチャに適しており、ノイズや異常値に頑健であり、計算効率が高く、複雑なパターンをキャプチャできるほど表現力が高く柔軟性がある。
さらに、これらの微分同相変換の勾配に対して閉形式解が開発され、パラメータ空間の効率的な探索が可能となり、収束時のより良い解が得られる。
これらの閉形式微分同相変換の利点を活用して、この論文は以下の一連の進歩を提案する。
(a)時系列アライメントと平均化のための拡張時間変換器ネットワーク
(b)高精度に信号の調整と分類を行う深層学習に基づく時系列分類モデル。
c)ワーピング不変でスケーラブルで,限られた計算資源と時間資源の下で動作可能で,最後に,逐次時系列クラスタリングアルゴリズム
(d) 結合層および自己回帰層におけるアフィン変換の柔軟性を高める正規化フローモデル。
関連論文リスト
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための生成変換器Timer-XLを提案する。
Timer-XLは、統一されたアプローチにより、挑戦的な予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting [26.141054975797868]
時系列予測(TSF)のための新しい適応型マルチスケール分解(AMD)フレームワークを提案する。
我々のフレームワークは時系列を複数のスケールで異なる時間パターンに分解し、MDM(Multi-Scale Decomposable Mixing)ブロックを活用する。
提案手法は,時間依存性とチャネル依存性の両方を効果的にモデル化し,マルチスケールデータ統合を改良するために自己相関を利用する。
論文 参考訳(メタデータ) (2024-06-06T05:27:33Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
非定常PGDSは、基礎となる遷移行列が時間とともに進化できるように提案されている。
後続シミュレーションを行うために, 完全共役かつ効率的なギブスサンプリング装置を開発した。
実験により,提案した非定常PGDSは,関連するモデルと比較して予測性能が向上することを示した。
論文 参考訳(メタデータ) (2024-02-26T04:39:01Z) - Efficient Interpretable Nonlinear Modeling for Multiple Time Series [5.448070998907116]
本稿では,複数時系列に対する効率的な非線形モデリング手法を提案する。
異なる時系列変数間の非線形相互作用を含む。
実験結果から,提案アルゴリズムは相似的にVAR係数の支持値の同定を改善することが示された。
論文 参考訳(メタデータ) (2023-09-29T11:42:59Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Closed-Form Diffeomorphic Transformations for Time Series Alignment [0.0]
本稿では, ODE 解に対する閉形式表現とその勾配を, 連続的なピースワイド・ファイン速度関数の下で表現する。
その結果,効率と精度の両面で有意な改善が認められた。
論文 参考訳(メタデータ) (2022-06-16T12:02:12Z) - Deep Explicit Duration Switching Models for Time Series [84.33678003781908]
状態依存型と時間依存型の両方のスイッチングダイナミクスを識別できるフレキシブルモデルを提案する。
状態依存スイッチングは、リカレントな状態-スイッチ接続によって実現される。
時間依存スイッチング動作を改善するために、明示的な期間カウント変数が使用される。
論文 参考訳(メタデータ) (2021-10-26T17:35:21Z) - Nesterov Accelerated ADMM for Fast Diffeomorphic Image Registration [63.15453821022452]
ディープラーニングに基づくアプローチの最近の発展は、DiffIRのサブ秒間実行を実現している。
本稿では,中間定常速度場を機能的に構成する簡易な反復スキームを提案する。
次に、任意の順序の正規化項を用いて、これらの速度場に滑らかさを課す凸最適化モデルを提案する。
論文 参考訳(メタデータ) (2021-09-26T19:56:45Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
DiffPDは、暗黙の時間積分を持つ効率的な微分可能なソフトボディシミュレータである。
我々はDiffPDの性能を評価し,様々な応用における標準ニュートン法と比較して4~19倍のスピードアップを観測した。
論文 参考訳(メタデータ) (2021-01-15T00:13:33Z) - Hierarchical Deep Learning of Multiscale Differential Equation
Time-Steppers [5.6385744392820465]
本研究では,時間スケールの異なる範囲にわたる動的システムのフローマップを近似するために,ディープニューラルネットワークの時間ステップ階層を構築した。
結果のモデルは純粋にデータ駆動であり、マルチスケールのダイナミックスの特徴を活用する。
我々は,LSTM,貯水池計算,クロックワークRNNなどの最先端手法に対して,我々のアルゴリズムをベンチマークする。
論文 参考訳(メタデータ) (2020-08-22T07:16:53Z) - Fast Variational Learning in State-Space Gaussian Process Models [29.630197272150003]
我々は共役計算変分推論と呼ばれる既存の手法に基づいて構築する。
ジャスト・イン・タイムのコンパイルを利用する効率的なJAX実装を提供しています。
我々の手法は、何百万ものデータポイントを持つ時系列にスケールできる状態空間GPモデルにおいて、高速かつ安定した変分推論をもたらす。
論文 参考訳(メタデータ) (2020-07-09T12:06:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。